HILDIF: Interactive Debugging of NLI Models Using Influence Functions

Hugo Zylberajch, Piyawat Lertvittayakumjorn, Francesca Toni
{"title":"HILDIF: Interactive Debugging of NLI Models Using Influence Functions","authors":"Hugo Zylberajch, Piyawat Lertvittayakumjorn, Francesca Toni","doi":"10.18653/v1/2021.internlp-1.1","DOIUrl":null,"url":null,"abstract":"Biases and artifacts in training data can cause unwelcome behavior in text classifiers (such as shallow pattern matching), leading to lack of generalizability. One solution to this problem is to include users in the loop and leverage their feedback to improve models. We propose a novel explanatory debugging pipeline called HILDIF, enabling humans to improve deep text classifiers using influence functions as an explanation method. We experiment on the Natural Language Inference (NLI) task, showing that HILDIF can effectively alleviate artifact problems in fine-tuned BERT models and result in increased model generalizability.","PeriodicalId":262697,"journal":{"name":"Proceedings of the First Workshop on Interactive Learning for Natural Language Processing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Interactive Learning for Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.internlp-1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Biases and artifacts in training data can cause unwelcome behavior in text classifiers (such as shallow pattern matching), leading to lack of generalizability. One solution to this problem is to include users in the loop and leverage their feedback to improve models. We propose a novel explanatory debugging pipeline called HILDIF, enabling humans to improve deep text classifiers using influence functions as an explanation method. We experiment on the Natural Language Inference (NLI) task, showing that HILDIF can effectively alleviate artifact problems in fine-tuned BERT models and result in increased model generalizability.
使用影响函数的NLI模型交互式调试
训练数据中的偏差和工件可能会导致文本分类器中出现不受欢迎的行为(例如浅模式匹配),从而导致缺乏泛化性。这个问题的一个解决方案是将用户包括在循环中,并利用他们的反馈来改进模型。我们提出了一种新的解释性调试管道,称为HILDIF,使人类能够使用影响函数作为解释方法来改进深度文本分类器。我们在自然语言推理(NLI)任务上进行了实验,结果表明HILDIF可以有效地缓解微调BERT模型中的工件问题,并提高模型的泛化性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信