Impredicative Encodings of (Higher) Inductive Types

S. Awodey, Jonas Frey, S. Speight
{"title":"Impredicative Encodings of (Higher) Inductive Types","authors":"S. Awodey, Jonas Frey, S. Speight","doi":"10.1145/3209108.3209130","DOIUrl":null,"url":null,"abstract":"Postulating an impredicative universe in dependent type theory allows System F style encodings of finitary inductive types, but these fail to satisfy the relevant η-equalities and consequently do not admit dependent eliminators. To recover η and dependent elimination, we present a method to construct refinements of these impredicative encodings, using ideas from homotopy type theory. We then extend our method to construct impredicative encodings of some higher inductive types, such as 1-truncation and the unit circle S1.","PeriodicalId":389131,"journal":{"name":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209108.3209130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Postulating an impredicative universe in dependent type theory allows System F style encodings of finitary inductive types, but these fail to satisfy the relevant η-equalities and consequently do not admit dependent eliminators. To recover η and dependent elimination, we present a method to construct refinements of these impredicative encodings, using ideas from homotopy type theory. We then extend our method to construct impredicative encodings of some higher inductive types, such as 1-truncation and the unit circle S1.
(高级)归纳类型的谓词编码
在依赖类型理论中假设一个不可预测的宇宙允许有限归纳类型的系统F风格编码,但这些编码不能满足相关的η-等式,因此不允许依赖消去子。为了恢复η和相依消去,我们提出了一种利用同伦型理论的思想构造这些预估编码的改进方法。然后,我们扩展了我们的方法来构造一些更高归纳类型的预估编码,如1-截断和单位圆S1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信