Sardino: Ultra-Fast Dynamic Ensemble for Secure Visual Sensing at Mobile Edge

Qun Song, Zhenyu Yan, W. Luo, Rui Tan
{"title":"Sardino: Ultra-Fast Dynamic Ensemble for Secure Visual Sensing at Mobile Edge","authors":"Qun Song, Zhenyu Yan, W. Luo, Rui Tan","doi":"10.48550/arXiv.2204.08189","DOIUrl":null,"url":null,"abstract":"—Adversarial example attack endangers the mobile edge systems such as vehicles and drones that adopt deep neural networks for visual sensing. This paper presents Sardino , an active and dynamic defense approach that renews the inference ensemble at run time to develop security against the adaptive adversary who tries to exfiltrate the ensemble and construct the corresponding effective adversarial examples. By applying consistency check and data fusion on the ensemble’s predictions, Sardino can detect and thwart adversarial inputs. Compared with the training-based ensemble renewal, we use HyperNet to achieve one million times acceleration and per-frame ensemble renewal that presents the highest level of difficulty to the prerequisite exfiltration attacks. Moreover, the robustness of the renewed ensembles against adversarial examples is enhanced with adversarial learning for the HyperNet. We design a run- time planner that maximizes the ensemble size in favor of security while maintaining the processing frame rate. Beyond adversarial examples, Sardino can also address the issue of out-of-distribution inputs effectively. This paper presents extensive evaluation of Sardino’s performance in counteracting adversarial examples and applies it to build a real-time car-borne traffic sign recognition system. Live on-road tests show the built system’s effectiveness in maintaining frame rate and detecting out-of- distribution inputs due to the false positives of a preceding YOLO-based traffic sign detector.","PeriodicalId":443547,"journal":{"name":"European Conference/Workshop on Wireless Sensor Networks","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference/Workshop on Wireless Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.08189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

—Adversarial example attack endangers the mobile edge systems such as vehicles and drones that adopt deep neural networks for visual sensing. This paper presents Sardino , an active and dynamic defense approach that renews the inference ensemble at run time to develop security against the adaptive adversary who tries to exfiltrate the ensemble and construct the corresponding effective adversarial examples. By applying consistency check and data fusion on the ensemble’s predictions, Sardino can detect and thwart adversarial inputs. Compared with the training-based ensemble renewal, we use HyperNet to achieve one million times acceleration and per-frame ensemble renewal that presents the highest level of difficulty to the prerequisite exfiltration attacks. Moreover, the robustness of the renewed ensembles against adversarial examples is enhanced with adversarial learning for the HyperNet. We design a run- time planner that maximizes the ensemble size in favor of security while maintaining the processing frame rate. Beyond adversarial examples, Sardino can also address the issue of out-of-distribution inputs effectively. This paper presents extensive evaluation of Sardino’s performance in counteracting adversarial examples and applies it to build a real-time car-borne traffic sign recognition system. Live on-road tests show the built system’s effectiveness in maintaining frame rate and detecting out-of- distribution inputs due to the false positives of a preceding YOLO-based traffic sign detector.
Sardino:移动边缘安全视觉传感的超快速动态集成
-对抗性示例攻击危及采用深度神经网络进行视觉感知的车辆和无人机等移动边缘系统。本文提出了一种主动的、动态的防御方法Sardino,该方法在运行时更新推理集成,以开发针对试图从集成中泄漏的自适应对手的安全性,并构造相应的有效对抗示例。通过对集合的预测应用一致性检查和数据融合,Sardino可以检测并阻止对抗性输入。与基于训练的集成更新相比,我们使用HyperNet实现了一百万倍的加速和每帧集成更新,这对先决条件的泄露攻击提出了最高的难度。此外,通过HyperNet的对抗性学习,增强了更新集合对对抗性示例的鲁棒性。我们设计了一个运行时规划器,在保持处理帧率的同时,最大限度地提高了集成大小,有利于安全性。除了对抗性的例子,Sardino还可以有效地解决分布外输入的问题。本文对Sardino算法在对抗对抗示例中的性能进行了广泛的评估,并将其应用于构建实时车载交通标志识别系统。现场道路测试表明,所构建的系统在保持帧速率和检测由于先前基于yolo的交通标志检测器的误报而导致的分布外输入方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信