Solving irreducible stochastic mean-payoff games and entropy games by relative Krasnoselskii-Mann iteration

M. Akian, S. Gaubert, Ulysse Naepels, Basile Terver
{"title":"Solving irreducible stochastic mean-payoff games and entropy games by relative Krasnoselskii-Mann iteration","authors":"M. Akian, S. Gaubert, Ulysse Naepels, Basile Terver","doi":"10.48550/arXiv.2305.02458","DOIUrl":null,"url":null,"abstract":"We analyse an algorithm solving stochastic mean-payoff games, combining the ideas of relative value iteration and of Krasnoselskii-Mann damping. We derive parameterized complexity bounds for several classes of games satisfying irreducibility conditions. We show in particular that an $\\epsilon$-approximation of the value of an irreducible concurrent stochastic game can be computed in a number of iterations in $O(|\\log\\epsilon|)$ where the constant in the $O(\\cdot)$ is explicit, depending on the smallest non-zero transition probabilities. This should be compared with a bound in $O(|\\epsilon|^{-1}|\\log(\\epsilon)|)$ obtained by Chatterjee and Ibsen-Jensen (ICALP 2014) for the same class of games, and to a $O(|\\epsilon|^{-1})$ bound by Allamigeon, Gaubert, Katz and Skomra (ICALP 2022) for turn-based games. We also establish parameterized complexity bounds for entropy games, a class of matrix multiplication games introduced by Asarin, Cervelle, Degorre, Dima, Horn and Kozyakin. We derive these results by methods of variational analysis, establishing contraction properties of the relative Krasnoselskii-Mann iteration with respect to Hilbert's semi-norm.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.02458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We analyse an algorithm solving stochastic mean-payoff games, combining the ideas of relative value iteration and of Krasnoselskii-Mann damping. We derive parameterized complexity bounds for several classes of games satisfying irreducibility conditions. We show in particular that an $\epsilon$-approximation of the value of an irreducible concurrent stochastic game can be computed in a number of iterations in $O(|\log\epsilon|)$ where the constant in the $O(\cdot)$ is explicit, depending on the smallest non-zero transition probabilities. This should be compared with a bound in $O(|\epsilon|^{-1}|\log(\epsilon)|)$ obtained by Chatterjee and Ibsen-Jensen (ICALP 2014) for the same class of games, and to a $O(|\epsilon|^{-1})$ bound by Allamigeon, Gaubert, Katz and Skomra (ICALP 2022) for turn-based games. We also establish parameterized complexity bounds for entropy games, a class of matrix multiplication games introduced by Asarin, Cervelle, Degorre, Dima, Horn and Kozyakin. We derive these results by methods of variational analysis, establishing contraction properties of the relative Krasnoselskii-Mann iteration with respect to Hilbert's semi-norm.
用相对Krasnoselskii-Mann迭代求解不可约随机均值-收益对策和熵对策
结合相对值迭代和Krasnoselskii-Mann阻尼的思想,分析了一种求解随机均值收益博弈的算法。对于满足不可约条件的几类对策,导出了参数化的复杂度界。我们特别证明了一个不可约并发随机对策值的$\epsilon$ -近似可以在$O(|\log\epsilon|)$中的若干迭代中计算,其中$O(\cdot)$中的常数是显式的,取决于最小的非零转移概率。这应该与Chatterjee和Ibsen-Jensen (ICALP 2014)对同类游戏得出的$O(|\epsilon|^{-1}|\log(\epsilon)|)$的边界,以及Allamigeon、Gaubert、Katz和Skomra (ICALP 2022)对回合制游戏得出的$O(|\epsilon|^{-1})$的边界进行比较。我们还建立了熵对策的参数化复杂度界限,熵对策是由Asarin, Cervelle, Degorre, Dima, Horn和Kozyakin引入的一类矩阵乘法对策。我们用变分分析的方法得到了这些结果,建立了相对于希尔伯特半范数的Krasnoselskii-Mann迭代的收缩性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信