Fusion of monitoring data from cable-stayed bridge

F. Bruschetta, D. Zonta, C. Cappello, R. Zandonini, M. Pozzi, B. Glisic, D. Inaudi, D. Posenato, Ming L. Wang, Y. Zhao
{"title":"Fusion of monitoring data from cable-stayed bridge","authors":"F. Bruschetta, D. Zonta, C. Cappello, R. Zandonini, M. Pozzi, B. Glisic, D. Inaudi, D. Posenato, Ming L. Wang, Y. Zhao","doi":"10.1109/EESMS.2013.6661702","DOIUrl":null,"url":null,"abstract":"This contribution illustrates an application of Bayesian logic to monitoring data analysis and structural condition state inference. The case study is a cable-stayed bridge 260 m long spanning the Adige River ten kilometers north of the town of Trento, Italy. It is a statically indeterminate structure, consisting of a steel-concrete composite deck, supported by 12 stay cables. Structural redundancy, possible relaxation losses and an as-built condition differing from design, suggest that longterm load redistribution between cables can be expected. To monitor load redistribution, the owner decided to install a monitoring system that combines built-on-site elasto-magnetic and fiber-optic sensors. In this article, we discuss a rational way to improve the accuracy of the load variation, estimated using the elasto-magnetic sensors, taking advantage of the fiber-optic sensors information. More specifically, we use a multi-sensor Bayesian data fusion approach, which combines the information from the two sensing systems with the prior knowledge including design information and outcomes of laboratory calibration. Using the data acquired to date, we demonstrate that combining the two measurements allows a more accurate estimate of the cable load, to better than 50 kN.","PeriodicalId":385879,"journal":{"name":"2013 IEEE Workshop on Environmental Energy and Structural Monitoring Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Environmental Energy and Structural Monitoring Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EESMS.2013.6661702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This contribution illustrates an application of Bayesian logic to monitoring data analysis and structural condition state inference. The case study is a cable-stayed bridge 260 m long spanning the Adige River ten kilometers north of the town of Trento, Italy. It is a statically indeterminate structure, consisting of a steel-concrete composite deck, supported by 12 stay cables. Structural redundancy, possible relaxation losses and an as-built condition differing from design, suggest that longterm load redistribution between cables can be expected. To monitor load redistribution, the owner decided to install a monitoring system that combines built-on-site elasto-magnetic and fiber-optic sensors. In this article, we discuss a rational way to improve the accuracy of the load variation, estimated using the elasto-magnetic sensors, taking advantage of the fiber-optic sensors information. More specifically, we use a multi-sensor Bayesian data fusion approach, which combines the information from the two sensing systems with the prior knowledge including design information and outcomes of laboratory calibration. Using the data acquired to date, we demonstrate that combining the two measurements allows a more accurate estimate of the cable load, to better than 50 kN.
斜拉桥监测数据融合
这个贡献说明了贝叶斯逻辑在监测数据分析和结构状态推断中的应用。案例研究是一座260米长的斜拉桥,横跨意大利特伦托镇以北10公里处的阿迪杰河。它是一个超静定结构,由钢-混凝土组合甲板组成,由12根斜拉索支撑。结构冗余、可能的松弛损失和与设计不同的建成状态表明,电缆之间的长期载荷重新分配是可以预期的。为了监测负荷再分配,业主决定安装一个监测系统,该系统结合了内置的现场弹性磁传感器和光纤传感器。在本文中,我们讨论了利用光纤传感器的信息,提高弹性磁传感器估计负载变化精度的合理方法。更具体地说,我们使用了一种多传感器贝叶斯数据融合方法,该方法将来自两个传感系统的信息与包括设计信息和实验室校准结果在内的先验知识相结合。使用迄今为止获得的数据,我们证明结合这两种测量可以更准确地估计电缆负载,优于50 kN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信