A New Filled Function Method for the Non-convex Global Optimization

B. Qiao, Le Gao, Fei Wei
{"title":"A New Filled Function Method for the Non-convex Global Optimization","authors":"B. Qiao, Le Gao, Fei Wei","doi":"10.1109/CIS.2017.00055","DOIUrl":null,"url":null,"abstract":"The conundrum of the non-convex global optimization is that there are multiple local minima which are not global optimal solution, and conventional algorithms drop into local optimum easily. Filled function method is an available way which generally invokes an auxiliary function to move successively from a local minimizer to another better one. Definition-based on filled function, a new filled function with easy- adjustment parameter, simple form and non- exponential is proposed, and then prove the filled function can maintain the padding properties. Moreover, a local search method with stochastic and uniformity strategy is designed to strengthen the local search. Based on the above, a new filled function algorithm is presented. The numerical results indicate the proposed algorithm is feasible and effective, it follows that the stochastic and uniform strategy design is valid, further, the analysis and comparison of numerical experiments manifest high-efficiency, good stability and easy-realization.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The conundrum of the non-convex global optimization is that there are multiple local minima which are not global optimal solution, and conventional algorithms drop into local optimum easily. Filled function method is an available way which generally invokes an auxiliary function to move successively from a local minimizer to another better one. Definition-based on filled function, a new filled function with easy- adjustment parameter, simple form and non- exponential is proposed, and then prove the filled function can maintain the padding properties. Moreover, a local search method with stochastic and uniformity strategy is designed to strengthen the local search. Based on the above, a new filled function algorithm is presented. The numerical results indicate the proposed algorithm is feasible and effective, it follows that the stochastic and uniform strategy design is valid, further, the analysis and comparison of numerical experiments manifest high-efficiency, good stability and easy-realization.
一种新的非凸全局优化的填充函数方法
非凸全局优化问题的难点在于存在多个非全局最优解的局部最小值,传统算法容易陷入局部最优。填充函数法是一种可用的方法,它通常调用一个辅助函数来从一个局部最小化器连续移动到另一个更好的局部最小化器。在填充函数定义的基础上,提出了一种参数易调整、形式简单、非指数的填充函数,并证明了该填充函数能保持填充特性。在此基础上,设计了一种采用随机均匀策略的局部搜索方法来增强局部搜索能力。在此基础上,提出了一种新的填充函数算法。数值结果表明该算法是可行和有效的,表明随机均匀策略设计是有效的,并且通过数值实验的分析和比较表明该算法效率高、稳定性好、易于实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信