Improving the detection of noisy labels in image datasets using modified Confidence Learning

A. Popowicz, Krystian Radlak, S. Lasota, Karolina Szczepankiewicz, Michal Szczepankiewicz
{"title":"Improving the detection of noisy labels in image datasets using modified Confidence Learning","authors":"A. Popowicz, Krystian Radlak, S. Lasota, Karolina Szczepankiewicz, Michal Szczepankiewicz","doi":"10.1109/MMAR55195.2022.9874318","DOIUrl":null,"url":null,"abstract":"The effectiveness of machine learning algorithms, including deep neural networks (DNN) for classifying image data, depends on proper preparation of the training dataset. Erroneously labeled images in the training data will degrade algorithmic efficiency and cause unpredictable model behavior, thus reduce its safety. Verifying labels in the numerous available databases remains a complicated and laborious task. In this article, we present a MultiNET approach that allows for efficient verification of labeled image datasets. We adapt a state-of-the-art technique, namely Confidence Learning, extending its flexibility and improving the effectiveness by combining outcomes from various DNN architectures. Thanks to the proposed modification, it is possible to automatically detect incorrect labels while minimizing the number of false positives, thus making the verification process much less burdensome. The technique may be of use for researchers and software engineers dealing with externally supplied image datasets.","PeriodicalId":169528,"journal":{"name":"2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR55195.2022.9874318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The effectiveness of machine learning algorithms, including deep neural networks (DNN) for classifying image data, depends on proper preparation of the training dataset. Erroneously labeled images in the training data will degrade algorithmic efficiency and cause unpredictable model behavior, thus reduce its safety. Verifying labels in the numerous available databases remains a complicated and laborious task. In this article, we present a MultiNET approach that allows for efficient verification of labeled image datasets. We adapt a state-of-the-art technique, namely Confidence Learning, extending its flexibility and improving the effectiveness by combining outcomes from various DNN architectures. Thanks to the proposed modification, it is possible to automatically detect incorrect labels while minimizing the number of false positives, thus making the verification process much less burdensome. The technique may be of use for researchers and software engineers dealing with externally supplied image datasets.
利用改进的置信度学习改进图像数据集中噪声标签的检测
机器学习算法的有效性,包括用于图像数据分类的深度神经网络(DNN),取决于训练数据集的适当准备。训练数据中错误标记的图像会降低算法效率,导致模型行为不可预测,从而降低算法的安全性。验证众多可用数据库中的标签仍然是一项复杂而费力的任务。在本文中,我们提出了一种允许有效验证标记图像数据集的多网方法。我们采用了最先进的技术,即信心学习,通过结合各种深度神经网络架构的结果,扩展了其灵活性并提高了有效性。由于提出的修改,可以自动检测不正确的标签,同时最大限度地减少误报的数量,从而使验证过程大大减轻负担。该技术可用于研究人员和软件工程师处理外部提供的图像数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信