A high frequency inverter for cold temperature battery heating

A. Hande
{"title":"A high frequency inverter for cold temperature battery heating","authors":"A. Hande","doi":"10.1109/CIPE.2004.1428157","DOIUrl":null,"url":null,"abstract":"A high frequency inverter has been designed for internally heating hybrid electric vehicle (HEV) batteries at cold temperatures using alternating current (AC). The inverter was designed for a maximum pack voltage of 200 V and minimum operating frequency of 6.67 kHz while operating in the continuous conduction mode. It uses a pair of insulated gate bipolar transistors (IGBTs) connected in a half bridge configuration. The inverter circuit was first simulated in PSpice for obtaining adequate values for the circuit components and then constructed. A digital circuit was used to control the input signals to the IGBT driver cards. The inverter was tested on a pack of nickel metal hydride (NiMH) batteries at different cold temperatures to verify the feasibility of high frequency AC heating. A sophisticated data acquisition system was used for measuring battery temperature and voltage data for display on a computer. This data was also used to control the inverter operation during the tests. Experimental results have shown that at both -20 and -30 /spl deg/C, 10-20 kHz AC currents at amplitudes of 60-80 A rms warmed the pack to about 25 /spl deg/C within a few minutes, and thereby improved the pack discharge capability.","PeriodicalId":137483,"journal":{"name":"2004 IEEE Workshop on Computers in Power Electronics, 2004. Proceedings.","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE Workshop on Computers in Power Electronics, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIPE.2004.1428157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A high frequency inverter has been designed for internally heating hybrid electric vehicle (HEV) batteries at cold temperatures using alternating current (AC). The inverter was designed for a maximum pack voltage of 200 V and minimum operating frequency of 6.67 kHz while operating in the continuous conduction mode. It uses a pair of insulated gate bipolar transistors (IGBTs) connected in a half bridge configuration. The inverter circuit was first simulated in PSpice for obtaining adequate values for the circuit components and then constructed. A digital circuit was used to control the input signals to the IGBT driver cards. The inverter was tested on a pack of nickel metal hydride (NiMH) batteries at different cold temperatures to verify the feasibility of high frequency AC heating. A sophisticated data acquisition system was used for measuring battery temperature and voltage data for display on a computer. This data was also used to control the inverter operation during the tests. Experimental results have shown that at both -20 and -30 /spl deg/C, 10-20 kHz AC currents at amplitudes of 60-80 A rms warmed the pack to about 25 /spl deg/C within a few minutes, and thereby improved the pack discharge capability.
一种用于低温电池加热的高频变频器
设计了一种高频逆变器,用于在低温下使用交流电对混合动力汽车(HEV)电池进行内部加热。该逆变器工作在连续导通模式下,最大包电压为200 V,最小工作频率为6.67 kHz。它使用一对绝缘栅双极晶体管(igbt)以半桥结构连接。首先在PSpice中对逆变电路进行仿真,以获得电路元件的适当值,然后构建逆变电路。采用数字电路控制IGBT驱动卡的输入信号。在一组镍氢电池(NiMH)上进行了不同低温下的逆变器测试,验证了高频交流加热的可行性。一个复杂的数据采集系统用于测量电池温度和电压数据,并在计算机上显示。该数据还用于在测试期间控制逆变器的操作。实验结果表明,在-20和-30 /spl°C条件下,10-20 kHz 60-80 A有效值的交流电流在几分钟内将电池组加热到25 /spl°C左右,从而提高了电池组的放电能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信