Overcoming the Limitations Posed by TCR-beta Repertoire Modeling through a GPU-Based In-Silico DNA Recombination Algorithm

Gregory M. Striemer, Harsha Krovi, A. Akoglu, B. Vincent, Benjamin Hopson, J. Frelinger, Adam Buntzman
{"title":"Overcoming the Limitations Posed by TCR-beta Repertoire Modeling through a GPU-Based In-Silico DNA Recombination Algorithm","authors":"Gregory M. Striemer, Harsha Krovi, A. Akoglu, B. Vincent, Benjamin Hopson, J. Frelinger, Adam Buntzman","doi":"10.1109/IPDPS.2014.34","DOIUrl":null,"url":null,"abstract":"The DNA recombination process known as V(D)J recombination is the central mechanism for generating diversity among antigen receptors such as T-cell receptors (TCRs). This diversity is crucial for the development of the adaptive immune system. However, modeling of all the α β TCR sequences is encumbered by the enormity of the potential repertoire, which has been predicted to exceed 1015 sequences. Prior modeling efforts have, therefore, been limited to extrapolations based on the analysis of minor subsets of the overall TCRbeta repertoire. In this study, we map the recombination process completely onto the graphics processing unit (GPU) hardware architecture using the CUDA programming environment to circumvent prior limitations. For the first time, we present a model of the mouse TCRbeta repertoire to an extent which enabled us to evaluate the Convergent Recombination Hypothesis (CRH) comprehensively at peta-scale level on a single GPU.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The DNA recombination process known as V(D)J recombination is the central mechanism for generating diversity among antigen receptors such as T-cell receptors (TCRs). This diversity is crucial for the development of the adaptive immune system. However, modeling of all the α β TCR sequences is encumbered by the enormity of the potential repertoire, which has been predicted to exceed 1015 sequences. Prior modeling efforts have, therefore, been limited to extrapolations based on the analysis of minor subsets of the overall TCRbeta repertoire. In this study, we map the recombination process completely onto the graphics processing unit (GPU) hardware architecture using the CUDA programming environment to circumvent prior limitations. For the first time, we present a model of the mouse TCRbeta repertoire to an extent which enabled us to evaluate the Convergent Recombination Hypothesis (CRH) comprehensively at peta-scale level on a single GPU.
基于gpu的DNA重组算法克服TCR-beta库建模的局限性
被称为V(D)J重组的DNA重组过程是抗原受体如t细胞受体(tcr)之间产生多样性的主要机制。这种多样性对适应性免疫系统的发展至关重要。然而,所有α β TCR序列的建模都受到潜在库的巨大影响,预计超过1015个序列。因此,先前的建模工作仅限于基于整体TCRbeta曲目的次要子集的分析的外推。在本研究中,我们使用CUDA编程环境将重组过程完全映射到图形处理单元(GPU)硬件架构上,以绕过先前的限制。我们首次提出了小鼠TCRbeta库的模型,使我们能够在单个GPU上全面评估收敛重组假说(CRH)的peta级水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信