Coordinated Motion Planning of Dual-arm Space Robot with Deep Reinforcement Learning

Mengying Tang, Xiaofei Yue, Zhan Zuo, Xiaoping Huang, Yanfang Liu, N. Qi
{"title":"Coordinated Motion Planning of Dual-arm Space Robot with Deep Reinforcement Learning","authors":"Mengying Tang, Xiaofei Yue, Zhan Zuo, Xiaoping Huang, Yanfang Liu, N. Qi","doi":"10.1109/ICUS48101.2019.8996069","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on coordinated motion planning of dual-arm robot. The kinematics model of the robotic arm is established by Denavit-Hartenberg (D-H) coordinate method and the mathematical model of the cooperative motion planning problem is established. The rapidly-exploring random trees (RRT) algorithm and the deep deterministic policy gradient (DDPG) algorithm are used to carry out dual-arm coordinated motion planning, respectively. The simulation results show that these algorithms can effectively complete the robot arm motion planning task, but the RRT improved algorithm cannot balance the planning efficiency and result optimization. Compared with the RRT algorithm, the DDPG algorithm trains the model through continuous trial and error to optimize its planning strategy. The trained model can be used to obtain an optimized path and it can ensure the efficiency of the planning with the optimized strategy.","PeriodicalId":344181,"journal":{"name":"2019 IEEE International Conference on Unmanned Systems (ICUS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS48101.2019.8996069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we focus on coordinated motion planning of dual-arm robot. The kinematics model of the robotic arm is established by Denavit-Hartenberg (D-H) coordinate method and the mathematical model of the cooperative motion planning problem is established. The rapidly-exploring random trees (RRT) algorithm and the deep deterministic policy gradient (DDPG) algorithm are used to carry out dual-arm coordinated motion planning, respectively. The simulation results show that these algorithms can effectively complete the robot arm motion planning task, but the RRT improved algorithm cannot balance the planning efficiency and result optimization. Compared with the RRT algorithm, the DDPG algorithm trains the model through continuous trial and error to optimize its planning strategy. The trained model can be used to obtain an optimized path and it can ensure the efficiency of the planning with the optimized strategy.
基于深度强化学习的双臂空间机器人协调运动规划
本文主要研究双臂机器人的协调运动规划问题。采用Denavit-Hartenberg (D-H)坐标法建立了机械臂的运动学模型,并建立了协同运动规划问题的数学模型。采用快速探索随机树(RRT)算法和深度确定性策略梯度(DDPG)算法分别进行双臂协调运动规划。仿真结果表明,这些算法都能有效地完成机械臂运动规划任务,但RRT改进算法无法平衡规划效率和结果优化。与RRT算法相比,DDPG算法通过不断的试错来训练模型,优化其规划策略。训练后的模型可以得到最优路径,保证了优化策略规划的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信