McPAT-Calib: A Microarchitecture Power Modeling Framework for Modern CPUs

Jianwang Zhai, Chen Bai, Binwu Zhu, Yici Cai, Qiang Zhou, Bei Yu
{"title":"McPAT-Calib: A Microarchitecture Power Modeling Framework for Modern CPUs","authors":"Jianwang Zhai, Chen Bai, Binwu Zhu, Yici Cai, Qiang Zhou, Bei Yu","doi":"10.1109/ICCAD51958.2021.9643508","DOIUrl":null,"url":null,"abstract":"Energy efficiency has become the core issue of modern CPUs, and it is difficult for existing power models to balance speed, generality, and accuracy. This paper introduces McPAT-Calib, a microarchitecture power modeling framework, which combines McPAT with machine learning (ML) calibration methods. McPAT-Calib can quickly and accurately estimate the power of different benchmarks running on different CPU configurations, and provide an effective evaluation tool for the design of modern CPUs. First, McPAT-7nm is introduced to support the analytical power modeling for the 7nm technology node. Then, a wide range of modeling features are identified, and automatic feature selection and advanced regression methods are used to calibrate the McPAT-7nm modeling results, which greatly improves the generality and accuracy. Moreover, a sampling algorithm based on active learning (AL) is leveraged to effectively reduce the labeling cost. We use up to 15 configurations of 7nm RISC-V Berkeley Out-of-Order Machine (BOOM) along with 80 benchmarks to extensively evaluate the proposed framework. Compared with state-of-the-art microarchitecture power models, McPAT-Calib can reduce the mean absolute percentage error (MAPE) of shuffle-split cross-validation by 5.95%. More importantly, the MAPE is reduced by 6.14% and 3.64% for the evaluations of unknown CPU configurations and benchmarks, respectively. The AL sampling algorithm can reduce the demand of labeled samples by 50 %, while the accuracy loss is only 0.44 %.","PeriodicalId":370791,"journal":{"name":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD51958.2021.9643508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Energy efficiency has become the core issue of modern CPUs, and it is difficult for existing power models to balance speed, generality, and accuracy. This paper introduces McPAT-Calib, a microarchitecture power modeling framework, which combines McPAT with machine learning (ML) calibration methods. McPAT-Calib can quickly and accurately estimate the power of different benchmarks running on different CPU configurations, and provide an effective evaluation tool for the design of modern CPUs. First, McPAT-7nm is introduced to support the analytical power modeling for the 7nm technology node. Then, a wide range of modeling features are identified, and automatic feature selection and advanced regression methods are used to calibrate the McPAT-7nm modeling results, which greatly improves the generality and accuracy. Moreover, a sampling algorithm based on active learning (AL) is leveraged to effectively reduce the labeling cost. We use up to 15 configurations of 7nm RISC-V Berkeley Out-of-Order Machine (BOOM) along with 80 benchmarks to extensively evaluate the proposed framework. Compared with state-of-the-art microarchitecture power models, McPAT-Calib can reduce the mean absolute percentage error (MAPE) of shuffle-split cross-validation by 5.95%. More importantly, the MAPE is reduced by 6.14% and 3.64% for the evaluations of unknown CPU configurations and benchmarks, respectively. The AL sampling algorithm can reduce the demand of labeled samples by 50 %, while the accuracy loss is only 0.44 %.
McPAT-Calib:现代cpu的微架构功率建模框架
能效已成为现代cpu的核心问题,现有的功耗模型难以平衡速度、通用性和准确性。介绍了McPAT- calib微架构功率建模框架,该框架将McPAT与机器学习(ML)校准方法相结合。McPAT-Calib可以快速准确地估算不同CPU配置下不同基准测试的性能,为现代CPU的设计提供了有效的评估工具。首先,引入McPAT-7nm以支持7nm技术节点的分析功率建模。然后,识别广泛的建模特征,并采用自动特征选择和先进的回归方法对McPAT-7nm建模结果进行校准,大大提高了建模结果的通用性和准确性。此外,利用基于主动学习(AL)的采样算法有效地降低了标注成本。我们使用多达15种7nm RISC-V伯克利乱序机(BOOM)配置以及80个基准测试来广泛评估拟议的框架。与最先进的微架构功率模型相比,McPAT-Calib可将洗牌-分裂交叉验证的平均绝对百分比误差(MAPE)降低5.95%。更重要的是,对于未知CPU配置和基准测试的评估,MAPE分别降低了6.14%和3.64%。人工智能采样算法可以减少50%的标记样本需求,而精度损失仅为0.44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信