An Encoder-decoder based approach for generating Faces using Facial Attributes using CNN

Anu Saini, Mukul Rawat, Nikhil Pandey, Puneet Gupta
{"title":"An Encoder-decoder based approach for generating Faces using Facial Attributes using CNN","authors":"Anu Saini, Mukul Rawat, Nikhil Pandey, Puneet Gupta","doi":"10.1145/3474124.3474166","DOIUrl":null,"url":null,"abstract":"This paper addresses the challenge of generating faces using facial attributes. Although there are researches the address the problem of generating faces, they do so by using a facial image as a base and changing the required attributes. To solve this problem, we make CNN models to learn a classifier that can predict these features (1 feature per model) and output their labels. Labels are the enumerated value each attribute can take. Then these models are combined into one model to generate a dataset that maps the above 6 facial features to each image. This prepared dataset is then used to train the final CNN model that learns to generate a 200 × 200 × 3 matrix using a 6 × 1 matrix as input. The output matrix represents the resolution of the image with 3 channels namely, Red, Green and Blue. This 3D array when plotted gives the desired image. The 6 × 1 matrix represents the six labels. To improve the output, the final CNN model is changed and an Auto-encoder and decoder are used. Also, instead of 6 × 1 input array, 55 × 1 input array is used. This is first trained to regenerate images from an input image. The decoder from this trained model is then used for transfer learning. The decoder is retrained to learn the features specified by the 55 × 1 input matrix. Finally, this decoder is used to generate the desired images of size 150 × 150 × 3 using the 55 × 1 input matrix.","PeriodicalId":144611,"journal":{"name":"2021 Thirteenth International Conference on Contemporary Computing (IC3-2021)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Thirteenth International Conference on Contemporary Computing (IC3-2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474124.3474166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the challenge of generating faces using facial attributes. Although there are researches the address the problem of generating faces, they do so by using a facial image as a base and changing the required attributes. To solve this problem, we make CNN models to learn a classifier that can predict these features (1 feature per model) and output their labels. Labels are the enumerated value each attribute can take. Then these models are combined into one model to generate a dataset that maps the above 6 facial features to each image. This prepared dataset is then used to train the final CNN model that learns to generate a 200 × 200 × 3 matrix using a 6 × 1 matrix as input. The output matrix represents the resolution of the image with 3 channels namely, Red, Green and Blue. This 3D array when plotted gives the desired image. The 6 × 1 matrix represents the six labels. To improve the output, the final CNN model is changed and an Auto-encoder and decoder are used. Also, instead of 6 × 1 input array, 55 × 1 input array is used. This is first trained to regenerate images from an input image. The decoder from this trained model is then used for transfer learning. The decoder is retrained to learn the features specified by the 55 × 1 input matrix. Finally, this decoder is used to generate the desired images of size 150 × 150 × 3 using the 55 × 1 input matrix.
一种基于编码器-解码器的基于CNN的面部属性生成人脸的方法
本文解决了使用人脸属性生成人脸的难题。虽然已有研究解决了人脸的生成问题,但它们都是以人脸图像为基础,改变所需的属性来实现的。为了解决这个问题,我们让CNN模型学习一个分类器,这个分类器可以预测这些特征(每个模型1个特征)并输出它们的标签。标签是每个属性可以使用的枚举值。然后将这些模型组合成一个模型生成一个数据集,该数据集将上述6个面部特征映射到每个图像上。然后使用这个准备好的数据集来训练最终的CNN模型,该模型学习使用6 × 1矩阵作为输入生成200 × 200 × 3矩阵。输出矩阵表示图像的分辨率,有红、绿、蓝3个通道。绘制后,这个3D数组给出了所需的图像。6 × 1矩阵表示6个标签。为了提高输出,改变了最终的CNN模型,并使用了自编码器和解码器。另外,使用55 × 1输入数组代替6 × 1输入数组。首先训练它从输入图像重新生成图像。然后将这个训练模型的解码器用于迁移学习。解码器被重新训练以学习由55 × 1输入矩阵指定的特征。最后,使用该解码器使用55 × 1输入矩阵生成尺寸为150 × 150 × 3的所需图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信