SPLIT DUAL JACOBSTHAL AND JACOBSTHAL-LUCAS QUATERNIONS

Umit Tokeser, Zafer Unal
{"title":"SPLIT DUAL JACOBSTHAL AND JACOBSTHAL-LUCAS QUATERNIONS","authors":"Umit Tokeser, Zafer Unal","doi":"10.56557/ajomcor/2022/v29i37938","DOIUrl":null,"url":null,"abstract":"Many researchs have been studied on quaternions since Hamilton introduced them to the literature in 1843. In our paper, we gave split dual Jacobsthal (SDJ) and split dual Jacobsthal-Lucas (SDJL) quaternions over the algebra H(μ,n) with the basis {1; e1; e2; e3}, where  μ,n ∈ Z. Binet like formulaes are obtained for these quaternions. Also, given Vajda identities for SDJ and SDJL quaternions.As a special case of Vajda identities, d'Ocagne's, Cassini's and Catalan's identities are represented.","PeriodicalId":200824,"journal":{"name":"Asian Journal of Mathematics and Computer Research","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics and Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56557/ajomcor/2022/v29i37938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many researchs have been studied on quaternions since Hamilton introduced them to the literature in 1843. In our paper, we gave split dual Jacobsthal (SDJ) and split dual Jacobsthal-Lucas (SDJL) quaternions over the algebra H(μ,n) with the basis {1; e1; e2; e3}, where  μ,n ∈ Z. Binet like formulaes are obtained for these quaternions. Also, given Vajda identities for SDJ and SDJL quaternions.As a special case of Vajda identities, d'Ocagne's, Cassini's and Catalan's identities are represented.
拆分对偶雅各布斯塔尔和雅各布斯塔尔-卢卡斯四元数
自汉密尔顿于1843年将四元数引入文献以来,人们对四元数进行了许多研究。在本文中,我们给出了基为{1;e1;e2;e3},其中μ,n∈z。得到了这些四元数的类Binet公式。另外,给出了SDJ和SDJL四元数的Vajda恒等式。作为Vajda身份的一个特例,d’ocagne’s、Cassini’s和catalalan’s的身份得到了代表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信