{"title":"SPLIT DUAL JACOBSTHAL AND JACOBSTHAL-LUCAS QUATERNIONS","authors":"Umit Tokeser, Zafer Unal","doi":"10.56557/ajomcor/2022/v29i37938","DOIUrl":null,"url":null,"abstract":"Many researchs have been studied on quaternions since Hamilton introduced them to the literature in 1843. In our paper, we gave split dual Jacobsthal (SDJ) and split dual Jacobsthal-Lucas (SDJL) quaternions over the algebra H(μ,n) with the basis {1; e1; e2; e3}, where μ,n ∈ Z. Binet like formulaes are obtained for these quaternions. Also, given Vajda identities for SDJ and SDJL quaternions.As a special case of Vajda identities, d'Ocagne's, Cassini's and Catalan's identities are represented.","PeriodicalId":200824,"journal":{"name":"Asian Journal of Mathematics and Computer Research","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics and Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56557/ajomcor/2022/v29i37938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Many researchs have been studied on quaternions since Hamilton introduced them to the literature in 1843. In our paper, we gave split dual Jacobsthal (SDJ) and split dual Jacobsthal-Lucas (SDJL) quaternions over the algebra H(μ,n) with the basis {1; e1; e2; e3}, where μ,n ∈ Z. Binet like formulaes are obtained for these quaternions. Also, given Vajda identities for SDJ and SDJL quaternions.As a special case of Vajda identities, d'Ocagne's, Cassini's and Catalan's identities are represented.