{"title":"Iterative Solution of Sparse Linear Least Squares using LU Factorization","authors":"G. Howell, M. Baboulin","doi":"10.1145/3149457.3149462","DOIUrl":null,"url":null,"abstract":"In this paper, we are interested in computing the solution of an overdetermined sparse linear least squares problem Ax=b via the normal equations method. Transforming the normal equations using the L factor from a rectangular LU decomposition of A usually leads to a better conditioned problem. Here we explore a further preconditioning by inv(L1) where L1 is the n × n upper part of the lower trapezoidal m × n factor L. Since the condition number of the iteration matrix can be easily bounded, we can determine whether the iteration will be effective, and whether further pre-conditioning is required. Numerical experiments are performed with the Julia programming language. When the upper triangular matrix U has no near zero diagonal elements, the algorithm is observed to be reliable. When A has only a few more rows than columns, convergence requires relatively few iterations and the algorithm usually requires less storage than the Cholesky factor of AtA or the R factor of the QR factorization of A.","PeriodicalId":314778,"journal":{"name":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3149457.3149462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we are interested in computing the solution of an overdetermined sparse linear least squares problem Ax=b via the normal equations method. Transforming the normal equations using the L factor from a rectangular LU decomposition of A usually leads to a better conditioned problem. Here we explore a further preconditioning by inv(L1) where L1 is the n × n upper part of the lower trapezoidal m × n factor L. Since the condition number of the iteration matrix can be easily bounded, we can determine whether the iteration will be effective, and whether further pre-conditioning is required. Numerical experiments are performed with the Julia programming language. When the upper triangular matrix U has no near zero diagonal elements, the algorithm is observed to be reliable. When A has only a few more rows than columns, convergence requires relatively few iterations and the algorithm usually requires less storage than the Cholesky factor of AtA or the R factor of the QR factorization of A.