Quintet Volume Projection

V. Markov, Olga Vilenskaia, Vlad Rashkovich
{"title":"Quintet Volume Projection","authors":"V. Markov, Olga Vilenskaia, Vlad Rashkovich","doi":"10.3905/jot.2017.12.2.028","DOIUrl":null,"url":null,"abstract":"We present a set of models that are relevant for predicting various aspects of intraday trading volume for equities and showcase them as an ensemble that projects volume in unison. We introduce econometric methods for predicting end-of-day volume, volume u-curve, close auction volume, and special day seasonalities and emphasize a need for a unified approach in which all submodels work consistently with each other. We rely on the application of Bayesian methods, which have the advantage of providing adaptive and parameterless estimations of volume for a broad range of equities while automatically taking into account uncertainty in the model input components. We discuss the shortcomings of traditional statistical error metrics for calibrating volume prediction and introduce asymmetrical logarithmic error to overweight an overestimation risk.","PeriodicalId":254660,"journal":{"name":"The Journal of Trading","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Trading","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jot.2017.12.2.028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a set of models that are relevant for predicting various aspects of intraday trading volume for equities and showcase them as an ensemble that projects volume in unison. We introduce econometric methods for predicting end-of-day volume, volume u-curve, close auction volume, and special day seasonalities and emphasize a need for a unified approach in which all submodels work consistently with each other. We rely on the application of Bayesian methods, which have the advantage of providing adaptive and parameterless estimations of volume for a broad range of equities while automatically taking into account uncertainty in the model input components. We discuss the shortcomings of traditional statistical error metrics for calibrating volume prediction and introduce asymmetrical logarithmic error to overweight an overestimation risk.
五重奏体投影
我们提出了一组模型,这些模型与预测股票盘中交易量的各个方面有关,并将它们作为一个整体展示,以一致的方式预测交易量。我们介绍了计量经济学方法来预测日终成交量、成交量u型曲线、成交成交量和特殊的日季节性,并强调需要一种统一的方法,在这种方法中,所有子模型相互一致地工作。我们依赖于贝叶斯方法的应用,它的优点是为大范围的股票提供自适应和无参数的交易量估计,同时自动考虑模型输入成分的不确定性。讨论了传统统计误差指标用于校准体积预测的缺点,并引入非对称对数误差来衡量超重和高估风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信