Flexible Channel Estimation for 3GPP 5G IoT on a Vector Digital Signal Processor

Stefan A. Damjancevic, Samuel Ajay Dasgupta, E. Matús, Dmitry Utyanksy, P. V. D. Wolf, G. Fettweis
{"title":"Flexible Channel Estimation for 3GPP 5G IoT on a Vector Digital Signal Processor","authors":"Stefan A. Damjancevic, Samuel Ajay Dasgupta, E. Matús, Dmitry Utyanksy, P. V. D. Wolf, G. Fettweis","doi":"10.1109/SiPS52927.2021.00011","DOIUrl":null,"url":null,"abstract":"The new 5G Reduced Capability (RedCap) protocol offers up to 88x and 528x higher data rates and dynamic pilot placements compared to previous Cat-M and NB-IoT standards, respectively. This leads to high application variability of IoT devices and therefore poses a challenge for the implementation of channel estimation (CE), especially under weak radio signal conditions. However, due to the computational complexity of optimal methods, practical suboptimal approaches with denoising capability are preferred in low-power devices. This work investigates the performance and implementation aspects of practical IoT CE denoising techniques on a vector digital signal processor (vDSP). This solution enables adaptation to the new IoT workload requirements with a 15.9x speed-up compared to the non-vectorised approach at 99.2% processor efficiency. In addition, for the purpose of solution adaptation to various IoT standards, the clock frequency requirements for the complete channel estimation chain are analysed with respect to different processor configurations.","PeriodicalId":103894,"journal":{"name":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS52927.2021.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The new 5G Reduced Capability (RedCap) protocol offers up to 88x and 528x higher data rates and dynamic pilot placements compared to previous Cat-M and NB-IoT standards, respectively. This leads to high application variability of IoT devices and therefore poses a challenge for the implementation of channel estimation (CE), especially under weak radio signal conditions. However, due to the computational complexity of optimal methods, practical suboptimal approaches with denoising capability are preferred in low-power devices. This work investigates the performance and implementation aspects of practical IoT CE denoising techniques on a vector digital signal processor (vDSP). This solution enables adaptation to the new IoT workload requirements with a 15.9x speed-up compared to the non-vectorised approach at 99.2% processor efficiency. In addition, for the purpose of solution adaptation to various IoT standards, the clock frequency requirements for the complete channel estimation chain are analysed with respect to different processor configurations.
基于矢量数字信号处理器的3GPP 5G物联网柔性信道估计
与之前的Cat-M和NB-IoT标准相比,新的5G低容量(RedCap)协议分别提供高达88倍和528倍的数据速率和动态试点位置。这导致物联网设备的应用高度可变性,因此对信道估计(CE)的实现提出了挑战,特别是在微弱的无线电信号条件下。然而,由于优化方法的计算复杂性,在低功耗器件中首选具有去噪能力的实用次优方法。这项工作研究了矢量数字信号处理器(vDSP)上实用物联网CE去噪技术的性能和实现方面。该解决方案能够适应新的物联网工作负载需求,与非矢量化方法相比,其速度提高了15.9倍,处理器效率为99.2%。此外,为了使解决方案适应各种物联网标准,针对不同的处理器配置,分析了完整信道估计链的时钟频率要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信