Recursive least-squares doubly-selective MIMO channel estimation using exponential basis models

Hyosung Kim, Jitendra Tugnait
{"title":"Recursive least-squares doubly-selective MIMO channel estimation using exponential basis models","authors":"Hyosung Kim, Jitendra Tugnait","doi":"10.1109/CISS.2009.5054772","DOIUrl":null,"url":null,"abstract":"An adaptive MIMO channel estimation scheme, exploiting the oversampled complex exponential basis expansion model (CE-BEM), is presented for doubly-selective fading channels where we track the BEM coefficients. The time-varying nature of the channel is well captured by the CE-BEM while the time-variations of the (unknown) BEM coefficients are likely much slower than that of the channel. We apply the exponentially-weighted and sliding-window recursive least-squares (RLS) algorithms to track the BEM coefficients subblock-by-subblock, using time-multiplexed periodically transmitted training symbols. Simulation examples demonstrate its superior performance over the conventional block-wise channel estimator.","PeriodicalId":433796,"journal":{"name":"2009 43rd Annual Conference on Information Sciences and Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 43rd Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2009.5054772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An adaptive MIMO channel estimation scheme, exploiting the oversampled complex exponential basis expansion model (CE-BEM), is presented for doubly-selective fading channels where we track the BEM coefficients. The time-varying nature of the channel is well captured by the CE-BEM while the time-variations of the (unknown) BEM coefficients are likely much slower than that of the channel. We apply the exponentially-weighted and sliding-window recursive least-squares (RLS) algorithms to track the BEM coefficients subblock-by-subblock, using time-multiplexed periodically transmitted training symbols. Simulation examples demonstrate its superior performance over the conventional block-wise channel estimator.
基于指数基模型的递归最小二乘双选择MIMO信道估计
针对双选择性衰落信道,提出了一种利用过采样复指数基展开模型(CE-BEM)的自适应MIMO信道估计方案,并对BEM系数进行了跟踪。通道的时变特性被CE-BEM很好地捕获,而(未知的)BEM系数的时变可能比通道的时变慢得多。我们采用指数加权和滑动窗口递归最小二乘(RLS)算法,使用时间复用周期性传输的训练符号,逐子块跟踪BEM系数。仿真实例表明,该方法优于传统的分块信道估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信