Machine-learning-based network sparsification modeling for IoTs security analysis

Mingcheng Ling, Wei-min Qi, Di Chang, Xia Zhang, Chi Zhang
{"title":"Machine-learning-based network sparsification modeling for IoTs security analysis","authors":"Mingcheng Ling, Wei-min Qi, Di Chang, Xia Zhang, Chi Zhang","doi":"10.1117/12.2690061","DOIUrl":null,"url":null,"abstract":"As the security issues of Internet of Things (IoTs) are rapidly evolving, machine learning techniques are increasingly adopted for detecting and preventing cyber threats. Recent machine learning based approaches (e.g., anomaly detection, intrusion detection, and predictive analytics) are being utilized in IoTs security. With the proliferation of IoTs devices, it is crucial to develop scalable and effective security solutions to keep pace with the changing threat landscape. This paper proposes a novel NSM (Network Sparsification Modeling) approach for identifying and categorizing cybersecurity threats in the cloud and IoTs environment. The proposed NSM algorithm is to optimize the Kullback-Leilber divergence based on higher-order spanning k-tree modeling process. The NSM model is capable of detecting cybersecurity threats in the cloud and IoTs setting by converting raw data into a meaningful format. The performance of the NSM model was evaluated using CICIDS 2017 dataset. The testing results prove that NSM model is state-of-the-art by outperforming others. Future deep-learning approaches are capable to integrate in the ML-based NSM model for further enhancement.","PeriodicalId":118234,"journal":{"name":"4th International Conference on Information Science, Electrical and Automation Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Conference on Information Science, Electrical and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2690061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the security issues of Internet of Things (IoTs) are rapidly evolving, machine learning techniques are increasingly adopted for detecting and preventing cyber threats. Recent machine learning based approaches (e.g., anomaly detection, intrusion detection, and predictive analytics) are being utilized in IoTs security. With the proliferation of IoTs devices, it is crucial to develop scalable and effective security solutions to keep pace with the changing threat landscape. This paper proposes a novel NSM (Network Sparsification Modeling) approach for identifying and categorizing cybersecurity threats in the cloud and IoTs environment. The proposed NSM algorithm is to optimize the Kullback-Leilber divergence based on higher-order spanning k-tree modeling process. The NSM model is capable of detecting cybersecurity threats in the cloud and IoTs setting by converting raw data into a meaningful format. The performance of the NSM model was evaluated using CICIDS 2017 dataset. The testing results prove that NSM model is state-of-the-art by outperforming others. Future deep-learning approaches are capable to integrate in the ML-based NSM model for further enhancement.
基于机器学习的物联网安全分析网络稀疏化建模
随着物联网(iot)安全问题的快速发展,机器学习技术越来越多地用于检测和预防网络威胁。最近基于机器学习的方法(如异常检测、入侵检测和预测分析)正在物联网安全中得到应用。随着物联网设备的激增,开发可扩展且有效的安全解决方案以跟上不断变化的威胁形势至关重要。本文提出了一种新的NSM(网络稀疏化建模)方法,用于识别和分类云和物联网环境中的网络安全威胁。提出的NSM算法是基于高阶生成k树建模过程来优化Kullback-Leilber散度。NSM模型能够通过将原始数据转换为有意义的格式来检测云和物联网环境中的网络安全威胁。使用CICIDS 2017数据集对NSM模型的性能进行了评估。测试结果证明,NSM模型是最先进的,优于其他模型。未来的深度学习方法能够集成到基于ml的NSM模型中以进一步增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信