A derailment-free finite-state vector quantizer with optimized state codebooks

X. Ginesta, Seung P. Kim
{"title":"A derailment-free finite-state vector quantizer with optimized state codebooks","authors":"X. Ginesta, Seung P. Kim","doi":"10.1109/DCC.1995.515505","DOIUrl":null,"url":null,"abstract":"A new approach to the design of a finite-state vector quantizer (FSVQ) is proposed. FSVQ essentially exploits correlations between adjacent blocks for efficient coding. Previous FSVQ design schemes had ad-hoc features in defining states and resource allocation using equal number of bits for state codebooks regardless of their probabilities of occurrence in a given source. We propose a FSVQ design approach which improves the compression performance by merging states and using variable state-codebook sizes. Another undesirable feature of the FSVQ is a derailment problem which degrades the performance in many practical applications. We propose a structurally constrained state-codebook design approach that eliminates the derailment problem. The performance of the proposed algorithm outperforms previously known FSVQ methods. Further development of the algorithm utilizing mean-removed VQ is described which gives less block artifact even though PSNR is a little bit inferior.","PeriodicalId":107017,"journal":{"name":"Proceedings DCC '95 Data Compression Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '95 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1995.515505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new approach to the design of a finite-state vector quantizer (FSVQ) is proposed. FSVQ essentially exploits correlations between adjacent blocks for efficient coding. Previous FSVQ design schemes had ad-hoc features in defining states and resource allocation using equal number of bits for state codebooks regardless of their probabilities of occurrence in a given source. We propose a FSVQ design approach which improves the compression performance by merging states and using variable state-codebook sizes. Another undesirable feature of the FSVQ is a derailment problem which degrades the performance in many practical applications. We propose a structurally constrained state-codebook design approach that eliminates the derailment problem. The performance of the proposed algorithm outperforms previously known FSVQ methods. Further development of the algorithm utilizing mean-removed VQ is described which gives less block artifact even though PSNR is a little bit inferior.
具有优化状态码本的无脱轨有限状态矢量量化器
提出了一种设计有限状态矢量量化器(FSVQ)的新方法。FSVQ本质上是利用相邻块之间的相关性来实现高效编码。以前的FSVQ设计方案在定义状态和使用相等位数的状态码本分配资源方面具有特别的特点,而不管它们在给定源中出现的概率如何。我们提出了一种FSVQ设计方法,通过合并状态和使用可变状态码本大小来提高压缩性能。FSVQ的另一个不良特性是脱轨问题,它在许多实际应用中降低了性能。我们提出了一种结构约束的状态码本设计方法,以消除脱轨问题。该算法的性能优于先前已知的FSVQ方法。本文描述了利用均值去噪的VQ算法的进一步发展,尽管PSNR略差,但该算法产生的块伪影较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信