Self-stabilizing iterative solvers

Piyush Sao, R. Vuduc
{"title":"Self-stabilizing iterative solvers","authors":"Piyush Sao, R. Vuduc","doi":"10.1145/2530268.2530272","DOIUrl":null,"url":null,"abstract":"We show how to use the idea of self-stabilization, which originates in the context of distributed control, to make fault-tolerant iterative solvers. Generally, a self-stabilizing system is one that, starting from an arbitrary state (valid or invalid), reaches a valid state within a finite number of steps. This property imbues the system with a natural means of tolerating transient faults. We give two proof-of-concept examples of self-stabilizing iterative linear solvers: one for steepest descent (SD) and one for conjugate gradients (CG). Our self-stabilized versions of SD and CG require small amounts of fault-detection, e.g., we may check only for NaNs and infinities. We test our approach experimentally by analyzing its convergence and overhead for different types and rates of faults. Beyond the specific findings of this paper, we believe self-stabilization has promise to become a useful tool for constructing resilient solvers more generally.","PeriodicalId":259517,"journal":{"name":"ACM SIGPLAN Symposium on Scala","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Scala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2530268.2530272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

Abstract

We show how to use the idea of self-stabilization, which originates in the context of distributed control, to make fault-tolerant iterative solvers. Generally, a self-stabilizing system is one that, starting from an arbitrary state (valid or invalid), reaches a valid state within a finite number of steps. This property imbues the system with a natural means of tolerating transient faults. We give two proof-of-concept examples of self-stabilizing iterative linear solvers: one for steepest descent (SD) and one for conjugate gradients (CG). Our self-stabilized versions of SD and CG require small amounts of fault-detection, e.g., we may check only for NaNs and infinities. We test our approach experimentally by analyzing its convergence and overhead for different types and rates of faults. Beyond the specific findings of this paper, we believe self-stabilization has promise to become a useful tool for constructing resilient solvers more generally.
自稳定迭代求解器
我们展示了如何使用源自分布式控制的自稳定思想来制作容错迭代求解器。一般来说,自稳定系统是从任意状态(有效或无效)开始,在有限的步骤内达到有效状态的系统。这一特性赋予了系统一种容忍暂态故障的自然手段。我们给出了两个自稳定迭代线性解的概念证明例子:一个用于最陡下降(SD),一个用于共轭梯度(CG)。我们的SD和CG的自稳定版本需要少量的故障检测,例如,我们可能只检查nan和无穷大。我们通过实验测试了我们的方法,分析了它的收敛性和开销对不同类型和频率的故障。除了本文的具体发现之外,我们相信自稳定有望成为更普遍地构建弹性解的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信