Using Deep Learning Predictors and Latent Dirichlet Allocation to Identify Key Issues Affecting Clients in Chilean Restaurants

A. Ferreira, Walter Gómez, Ronald Kliebs
{"title":"Using Deep Learning Predictors and Latent Dirichlet Allocation to Identify Key Issues Affecting Clients in Chilean Restaurants","authors":"A. Ferreira, Walter Gómez, Ronald Kliebs","doi":"10.1109/LA-CCI48322.2021.9769840","DOIUrl":null,"url":null,"abstract":"In this work, we use a general sentiment analysis methodology to train different Deep Learning predictors so that a proper quantitative valuation can be obtained based on qualitative information given by customers on social media (comments). We use Convolutional Neural Network and Long Short-Term Memory combined with different inputs including the body of the comments and its title. With the trained predictors we classify a large set of comments regarding negative positive customer experiences. Finally we use Latent Dirichlet Allocation algorithm to identify the specific issues appearing on the comments related to negative customer experience ratings.","PeriodicalId":431041,"journal":{"name":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI48322.2021.9769840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we use a general sentiment analysis methodology to train different Deep Learning predictors so that a proper quantitative valuation can be obtained based on qualitative information given by customers on social media (comments). We use Convolutional Neural Network and Long Short-Term Memory combined with different inputs including the body of the comments and its title. With the trained predictors we classify a large set of comments regarding negative positive customer experiences. Finally we use Latent Dirichlet Allocation algorithm to identify the specific issues appearing on the comments related to negative customer experience ratings.
使用深度学习预测器和潜在狄利克雷分配来确定影响智利餐馆客户的关键问题
在这项工作中,我们使用一般的情感分析方法来训练不同的深度学习预测器,以便根据客户在社交媒体上给出的定性信息(评论)获得适当的定量评估。我们使用卷积神经网络和长短期记忆结合不同的输入,包括评论的主体和标题。通过训练好的预测器,我们对大量关于负面正面客户体验的评论进行分类。最后,我们使用潜狄利克雷分配算法来识别与负面客户体验评级相关的评论中出现的具体问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信