On Language Spaces, Scales and Cross-Lingual Transfer of UD Parsers

T. Samardžić, Ximena Gutierrez-Vasques, Rob van der Goot, Max Müller-Eberstein, Olga Pelloni, Barbara Plank
{"title":"On Language Spaces, Scales and Cross-Lingual Transfer of UD Parsers","authors":"T. Samardžić, Ximena Gutierrez-Vasques, Rob van der Goot, Max Müller-Eberstein, Olga Pelloni, Barbara Plank","doi":"10.18653/v1/2022.conll-1.18","DOIUrl":null,"url":null,"abstract":"Cross-lingual transfer of parsing models has been shown to work well for several closely-related languages, but predicting the success in other cases remains hard. Our study is a comprehensive analysis of the impact of linguistic distance on the transfer of UD parsers. As an alternative to syntactic typological distances extracted from URIEL, we propose three text-based feature spaces and show that they can be more precise predictors, especially on a more local scale, when only shorter distances are taken into account. Our analyses also reveal that the good coverage in typological databases is not among the factors that explain good transfer.","PeriodicalId":221345,"journal":{"name":"Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.conll-1.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cross-lingual transfer of parsing models has been shown to work well for several closely-related languages, but predicting the success in other cases remains hard. Our study is a comprehensive analysis of the impact of linguistic distance on the transfer of UD parsers. As an alternative to syntactic typological distances extracted from URIEL, we propose three text-based feature spaces and show that they can be more precise predictors, especially on a more local scale, when only shorter distances are taken into account. Our analyses also reveal that the good coverage in typological databases is not among the factors that explain good transfer.
论UD解析器的语言空间、尺度与跨语言迁移
解析模型的跨语言迁移已经被证明可以很好地用于几种密切相关的语言,但是预测在其他情况下的成功仍然很困难。我们的研究全面分析了语言距离对语言解析器迁移的影响。作为从URIEL中提取句法类型距离的替代方法,我们提出了三个基于文本的特征空间,并表明它们可以更精确地预测,特别是在更局部的尺度上,当只考虑较短的距离时。我们的分析还表明,类型学数据库的良好覆盖率并不是解释良好迁移的因素之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信