Data Mining by Discrete PSO Using Natural Encoding

N. K. Khan, M. Iqbal, A. R. Baig
{"title":"Data Mining by Discrete PSO Using Natural Encoding","authors":"N. K. Khan, M. Iqbal, A. R. Baig","doi":"10.1109/FUTURETECH.2010.5482723","DOIUrl":null,"url":null,"abstract":"In this paper we have presented a new Discrete Particle Swarm Optimization approach to induce rules from the discrete data. Particles are encoded using Natural Encoding scheme. Encoding scheme and position update rule used by the algorithm allows individual terms corresponding to different attributes in the rule antecedent to be disjunction of values of those attributes. The performance of the proposed algorithm is evaluated against six different datasets using tenfold testing scheme. Achieved error rate has been compared against various evolutionary and non-evolutionary classification techniques. The algorithm produces promising results by creating highly accurate rules for each dataset.","PeriodicalId":380192,"journal":{"name":"2010 5th International Conference on Future Information Technology","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th International Conference on Future Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUTURETECH.2010.5482723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we have presented a new Discrete Particle Swarm Optimization approach to induce rules from the discrete data. Particles are encoded using Natural Encoding scheme. Encoding scheme and position update rule used by the algorithm allows individual terms corresponding to different attributes in the rule antecedent to be disjunction of values of those attributes. The performance of the proposed algorithm is evaluated against six different datasets using tenfold testing scheme. Achieved error rate has been compared against various evolutionary and non-evolutionary classification techniques. The algorithm produces promising results by creating highly accurate rules for each dataset.
基于自然编码的离散粒子群数据挖掘
本文提出了一种新的离散粒子群优化方法,从离散数据中归纳出规则。粒子使用自然编码方案进行编码。算法使用的编码方案和位置更新规则允许规则先行词中对应不同属性的单个项是这些属性值的析取。采用十倍测试方案对六种不同的数据集进行了性能评估。已实现的错误率与各种进化和非进化分类技术进行了比较。该算法通过为每个数据集创建高度精确的规则来产生有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信