PEREA

Patrick P. Tsang, M. Au, Apu Kapadia, Sean W. Smith
{"title":"PEREA","authors":"Patrick P. Tsang, M. Au, Apu Kapadia, Sean W. Smith","doi":"10.1145/1455770.1455813","DOIUrl":null,"url":null,"abstract":"Several anonymous authentication schemes allow servers to revoke a misbehaving user's ability to make future accesses. Traditionally, these schemes have relied on powerful TTPs capable of deanonymizing (or linking) users' connections. Recent schemes such as Blacklistable Anonymous Credentials (BLAC) and Enhanced Privacy ID (EPID) support \"privacy-enhanced revocation\" -- servers can revoke misbehaving users without a TTP's involvement, and without learning the revoked users' identities. In BLAC and EPID, however, the computation required for authentication at the server is linear in the size (L) of the revocation list. We propose PEREA, a new anonymous authentication scheme for which this bottleneck computation is independent of the size of the revocation list. Instead, the time complexity of authentication is linear in the size (K << L) of a revocation window, the number of subsequent authentications before which a user's misbehavior must be recognized if the user is to be revoked. We prove the security of our construction, and have developed a prototype implementation of PEREA to validate its efficiency experimentally.","PeriodicalId":193189,"journal":{"name":"Proceedings of the 15th ACM conference on Computer and communications security - CCS '08","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM conference on Computer and communications security - CCS '08","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1455770.1455813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

Abstract

Several anonymous authentication schemes allow servers to revoke a misbehaving user's ability to make future accesses. Traditionally, these schemes have relied on powerful TTPs capable of deanonymizing (or linking) users' connections. Recent schemes such as Blacklistable Anonymous Credentials (BLAC) and Enhanced Privacy ID (EPID) support "privacy-enhanced revocation" -- servers can revoke misbehaving users without a TTP's involvement, and without learning the revoked users' identities. In BLAC and EPID, however, the computation required for authentication at the server is linear in the size (L) of the revocation list. We propose PEREA, a new anonymous authentication scheme for which this bottleneck computation is independent of the size of the revocation list. Instead, the time complexity of authentication is linear in the size (K << L) of a revocation window, the number of subsequent authentications before which a user's misbehavior must be recognized if the user is to be revoked. We prove the security of our construction, and have developed a prototype implementation of PEREA to validate its efficiency experimentally.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信