Automatic biometric identification system by hand geometry

S. González, C. Travieso, J. B. Alonso, M. Ferrer
{"title":"Automatic biometric identification system by hand geometry","authors":"S. González, C. Travieso, J. B. Alonso, M. Ferrer","doi":"10.1109/CCST.2003.1297573","DOIUrl":null,"url":null,"abstract":"We propose a novel and simple method to recognize individuals based on their hand-palm geometry. A compact set of parameters has been extracted and reduced using different transformations. Two classification methods have been implemented: neural networks (NN) based on the commonly used multilayer perceptron (MLP) and the most nearby neighbor classifier (KNN). Results show that not complex algorithms are required in the classification phase to obtain high recognition values. In our simulations, rates beyond 99% have been achieved.","PeriodicalId":344868,"journal":{"name":"IEEE 37th Annual 2003 International Carnahan Conference onSecurity Technology, 2003. Proceedings.","volume":"13 41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 37th Annual 2003 International Carnahan Conference onSecurity Technology, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2003.1297573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

We propose a novel and simple method to recognize individuals based on their hand-palm geometry. A compact set of parameters has been extracted and reduced using different transformations. Two classification methods have been implemented: neural networks (NN) based on the commonly used multilayer perceptron (MLP) and the most nearby neighbor classifier (KNN). Results show that not complex algorithms are required in the classification phase to obtain high recognition values. In our simulations, rates beyond 99% have been achieved.
自动生物识别系统由手几何
我们提出了一种新颖而简单的基于手掌几何形状的个体识别方法。使用不同的变换提取和约简了一组紧凑的参数。实现了两种分类方法:基于常用多层感知器(MLP)的神经网络(NN)和最近邻分类器(KNN)。结果表明,在分类阶段不需要复杂的算法就能获得较高的识别值。在我们的模拟中,已经实现了99%以上的速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信