GPU implementation of an anisotropic Huber-L1 dense optical flow algorithm using OpenCL

Duygu Buyukaydin, Toygar Akgün
{"title":"GPU implementation of an anisotropic Huber-L1 dense optical flow algorithm using OpenCL","authors":"Duygu Buyukaydin, Toygar Akgün","doi":"10.1109/SAMOS.2015.7363693","DOIUrl":null,"url":null,"abstract":"Optical flow estimation aims at inferring a dense pixel-wise correspondence field between two images or video frames. It is commonly used in video processing and computer vision applications, including motion-compensated frame processing, extracting temporal features, computing stereo disparity, understanding scene context/dynamics and understanding behavior. Dense optical flow estimation is a computationally complex problem. Fortunately, a wide range of optical flow estimation algorithms are embarrassingly parallel and can efficiently be accelerated on GPUs. In this work we discuss a massively multi-threaded GPU implementation of the anisotropic Huber-L1 optical flow estimation algorithm using OpenCL framework, which achieves per frame execution time speed-up factors up to almost 300×. Overall algorithm flow, GPU specific implementation details and performance results are presented.","PeriodicalId":346802,"journal":{"name":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2015.7363693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Optical flow estimation aims at inferring a dense pixel-wise correspondence field between two images or video frames. It is commonly used in video processing and computer vision applications, including motion-compensated frame processing, extracting temporal features, computing stereo disparity, understanding scene context/dynamics and understanding behavior. Dense optical flow estimation is a computationally complex problem. Fortunately, a wide range of optical flow estimation algorithms are embarrassingly parallel and can efficiently be accelerated on GPUs. In this work we discuss a massively multi-threaded GPU implementation of the anisotropic Huber-L1 optical flow estimation algorithm using OpenCL framework, which achieves per frame execution time speed-up factors up to almost 300×. Overall algorithm flow, GPU specific implementation details and performance results are presented.
利用OpenCL实现GPU各向异性Huber-L1密集光流算法
光流估计的目的是推断两个图像或视频帧之间密集的逐像素对应场。它通常用于视频处理和计算机视觉应用,包括运动补偿帧处理、提取时间特征、计算立体视差、理解场景上下文/动态和理解行为。密集光流估计是一个计算复杂的问题。幸运的是,许多光流估计算法都是并行的,并且可以在gpu上有效地加速。在这项工作中,我们讨论了使用OpenCL框架的各向异性Huber-L1光流估计算法的大规模多线程GPU实现,该算法实现了每帧执行时间加速因子高达近300倍。给出了总体算法流程、GPU具体实现细节和性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信