{"title":"Ensuring Consistency between Cycle-Accurate and Instruction Set Simulators","authors":"F. Jebali, D. Potop-Butucaru","doi":"10.1109/ACSD.2018.00019","DOIUrl":null,"url":null,"abstract":"The xMAS micro-architecture modeling language has been introduced by Intel to facilitate the formal representation and analysis of on-chip interconnect fabrics. In this paper, we introduce xMAStime, a new domain-specific language inspired by xMAS. xMAStime allows the modeling of full micro-architectures comprising certain classes of CPU pipelines, caches, and RAM. Given an in-order pipeline model in xMAStime, we automatically generate both a Cycle-Accurate, Bit-Accurate (CABA) hardware simulator and a timed instruction set simulator where time is accounted with safe upper bounds, as in the pipeline analysis step of Worst-Case Execution Time (WCET) analysis. The approach relies on the theory of endochronous systems, which allows us to ensure functional equivalence and timing consistency between the two generated simulators, using a delay-insensitivity argument. xMAStime is implemented over Lucid Synchrone – a dataflow synchronous language featuring a higher order type system and type inference, which facilitate the definition of our DSL. We use the new DSL to model and synthesize simulation code for a full-fledged MIPS32-based architecture.","PeriodicalId":242721,"journal":{"name":"2018 18th International Conference on Application of Concurrency to System Design (ACSD)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th International Conference on Application of Concurrency to System Design (ACSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSD.2018.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The xMAS micro-architecture modeling language has been introduced by Intel to facilitate the formal representation and analysis of on-chip interconnect fabrics. In this paper, we introduce xMAStime, a new domain-specific language inspired by xMAS. xMAStime allows the modeling of full micro-architectures comprising certain classes of CPU pipelines, caches, and RAM. Given an in-order pipeline model in xMAStime, we automatically generate both a Cycle-Accurate, Bit-Accurate (CABA) hardware simulator and a timed instruction set simulator where time is accounted with safe upper bounds, as in the pipeline analysis step of Worst-Case Execution Time (WCET) analysis. The approach relies on the theory of endochronous systems, which allows us to ensure functional equivalence and timing consistency between the two generated simulators, using a delay-insensitivity argument. xMAStime is implemented over Lucid Synchrone – a dataflow synchronous language featuring a higher order type system and type inference, which facilitate the definition of our DSL. We use the new DSL to model and synthesize simulation code for a full-fledged MIPS32-based architecture.