Estimation on a GAR(1) Process by the EM Algorithm

Popovici Georgiana, D. Monica
{"title":"Estimation on a GAR(1) Process by the EM Algorithm","authors":"Popovici Georgiana, D. Monica","doi":"10.1515/EQC.2007.165","DOIUrl":null,"url":null,"abstract":"Because of the increasing number of interrelated processes continuous monitoring and controlling of processes get more and more important. Time series constitute one possibility of modelling processes in order to determine an appropriate monitoring policy. One major problem when deriving a time series consists of estimating the values of the relevant parameters. This paper deals with the estimation of the parameters of a first order autoregressive gamma process by means of the EM algorithm. The formulae of the EM sequence are derived, the convergence of the procedure is established and the results of a simulation study are presented. The EM algorithm proves to be an appropriate estimation procedure in the case of the complex statistical model represented by a GAR(1) process.","PeriodicalId":360039,"journal":{"name":"Economic Quality Control","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economic Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/EQC.2007.165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Because of the increasing number of interrelated processes continuous monitoring and controlling of processes get more and more important. Time series constitute one possibility of modelling processes in order to determine an appropriate monitoring policy. One major problem when deriving a time series consists of estimating the values of the relevant parameters. This paper deals with the estimation of the parameters of a first order autoregressive gamma process by means of the EM algorithm. The formulae of the EM sequence are derived, the convergence of the procedure is established and the results of a simulation study are presented. The EM algorithm proves to be an appropriate estimation procedure in the case of the complex statistical model represented by a GAR(1) process.
基于EM算法的GAR(1)过程估计
由于相互关联的过程越来越多,过程的连续监测和控制变得越来越重要。时间序列是为确定适当的监测策略而对过程进行建模的一种可能性。导出时间序列时的一个主要问题是估计相关参数的值。本文研究了用EM算法估计一阶自回归过程参数的问题。推导了电磁序列的计算公式,证明了该过程的收敛性,并给出了仿真研究结果。对于以GAR(1)过程为代表的复杂统计模型,EM算法是一种合适的估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信