Generalized and Fundamental Solutions of Motion Equations of Two-Component Biot’s Medium

L. Alexeyeva, Yergali Kurmanov
{"title":"Generalized and Fundamental Solutions of Motion Equations of Two-Component Biot’s Medium","authors":"L. Alexeyeva, Yergali Kurmanov","doi":"10.5772/intechopen.92064","DOIUrl":null,"url":null,"abstract":"Here processes of wave propagation in a two-component Biot’s medium are considered, which are generated by arbitrary forces actions. By using Fourier transformation of generalized functions, a fundamental solution, Green tensor, of motion equations of this medium has been constructed in a non-stationary case and in the case of stationary harmonic oscillation. These tensors describe the processes of wave propagation (in spaces of dimensions 1, 2, 3) under an action of power sources concentrated at coordinates origin, which are described by a singular delta-function. Based on them, generalized solutions of these equations are constructed under the action of various sources of periodic and non-stationary perturbations, which are described by both regular and singular generalized functions. For regular acting forces, integral representations of solutions are given that can be used to calculate the stress-strain state of a porous water-saturated medium.","PeriodicalId":383521,"journal":{"name":"Mathematical Theorems - Boundary Value Problems and Approximations","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Theorems - Boundary Value Problems and Approximations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.92064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Here processes of wave propagation in a two-component Biot’s medium are considered, which are generated by arbitrary forces actions. By using Fourier transformation of generalized functions, a fundamental solution, Green tensor, of motion equations of this medium has been constructed in a non-stationary case and in the case of stationary harmonic oscillation. These tensors describe the processes of wave propagation (in spaces of dimensions 1, 2, 3) under an action of power sources concentrated at coordinates origin, which are described by a singular delta-function. Based on them, generalized solutions of these equations are constructed under the action of various sources of periodic and non-stationary perturbations, which are described by both regular and singular generalized functions. For regular acting forces, integral representations of solutions are given that can be used to calculate the stress-strain state of a porous water-saturated medium.
双分量生物介质运动方程的广义解和基本解
本文考虑了任意力作用下波在双分量介质中的传播过程。利用广义函数的傅里叶变换,构造了该介质在非定常和定常谐振振动情况下的运动方程的基本解——格林张量。这些张量描述了波在集中于坐标原点的能量源作用下的传播过程(在维度1、2、3的空间中),这些能量源被一个奇异的δ函数所描述。在此基础上,构造了这些方程在各种周期和非平稳扰动源作用下的广义解,并用正则和奇异广义函数描述这些扰动源。对于规则的作用力,给出了解的积分表示,可用于计算多孔饱和水介质的应力-应变状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信