pSPEA2: Optimization fitness and distance calculations for improving Strength Pareto Evolutionary Algorithm 2 (SPEA2)

Efendi Zaenudin, A. I. Kistijantoro
{"title":"pSPEA2: Optimization fitness and distance calculations for improving Strength Pareto Evolutionary Algorithm 2 (SPEA2)","authors":"Efendi Zaenudin, A. I. Kistijantoro","doi":"10.1109/ICITSI.2016.7858224","DOIUrl":null,"url":null,"abstract":"SPEA2 (Strength Pareto Evolutionary Algorithm 2) is an evolutionary algorithm based on population, which is solutions to resolve Multi-objective Optimization Problems (MOPs). It has selection process that to select from dataset or objective problem benchmarking such as DTLZ. Our aim is to improve SPEA2 performance to process a population using parallelism in GPU. By optimization fitness and distance calculations using transposed data to process in CUDA platform. The result shows that speed up increase approximately 1.5 times.","PeriodicalId":172314,"journal":{"name":"2016 International Conference on Information Technology Systems and Innovation (ICITSI)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Information Technology Systems and Innovation (ICITSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITSI.2016.7858224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

SPEA2 (Strength Pareto Evolutionary Algorithm 2) is an evolutionary algorithm based on population, which is solutions to resolve Multi-objective Optimization Problems (MOPs). It has selection process that to select from dataset or objective problem benchmarking such as DTLZ. Our aim is to improve SPEA2 performance to process a population using parallelism in GPU. By optimization fitness and distance calculations using transposed data to process in CUDA platform. The result shows that speed up increase approximately 1.5 times.
改进强度的Pareto进化算法2 (SPEA2)的优化适应度和距离计算
SPEA2 (Strength Pareto Evolutionary Algorithm 2)是一种基于种群的进化算法,是解决多目标优化问题(MOPs)的方法。它具有从数据集或客观问题基准(如DTLZ)中进行选择的过程。我们的目标是利用GPU的并行性来提高SPEA2处理人口的性能。通过优化适应度和距离计算,利用转置数据在CUDA平台上进行处理。结果表明,速度提高了约1.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信