High speed calculation of cryptographic hash functions by CNN chips

M. Csapodi, J. Vandewalle, T. Roska
{"title":"High speed calculation of cryptographic hash functions by CNN chips","authors":"M. Csapodi, J. Vandewalle, T. Roska","doi":"10.1109/CNNA.1998.685361","DOIUrl":null,"url":null,"abstract":"The paper is concerned with the implementation of cryptographic hash functions on the regular array of simple cellular neural network (CNN) cells with periodic boundary conditions. Cryptographic hash functions enable message origin authentication and validation of message content integrity. A class of cryptographic hash functions-termed Cartesian authentication codes-provide provable (unconditional) security for message authentication between two mutually trustful parties sharing a secret key. We succeeded in implementing existing constructions of Cartesian authentication codes on today's CNN Universal Machine (CNN-UM) chips. Here we prove that rather complex (binary) arithmetic can be performed on a simple CNN chip, by providing an algorithm to implement a specific Cartesian authentication code based on the computation of a polynomial expression over a finite field. The bitrate of the computation is in the 100 Mbit/sec range with existing chips.","PeriodicalId":171485,"journal":{"name":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","volume":"299 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1998.685361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The paper is concerned with the implementation of cryptographic hash functions on the regular array of simple cellular neural network (CNN) cells with periodic boundary conditions. Cryptographic hash functions enable message origin authentication and validation of message content integrity. A class of cryptographic hash functions-termed Cartesian authentication codes-provide provable (unconditional) security for message authentication between two mutually trustful parties sharing a secret key. We succeeded in implementing existing constructions of Cartesian authentication codes on today's CNN Universal Machine (CNN-UM) chips. Here we prove that rather complex (binary) arithmetic can be performed on a simple CNN chip, by providing an algorithm to implement a specific Cartesian authentication code based on the computation of a polynomial expression over a finite field. The bitrate of the computation is in the 100 Mbit/sec range with existing chips.
CNN芯片高速计算密码哈希函数
本文研究了具有周期边界条件的简单细胞神经网络(CNN)单元的规则数组上的加密哈希函数的实现。加密散列函数支持消息来源身份验证和消息内容完整性验证。一类加密散列函数——称为笛卡尔身份验证码——为共享密钥的两个相互信任的方之间的消息身份验证提供了可证明(无条件)的安全性。我们成功地在今天的CNN通用机器(CNN- um)芯片上实现了笛卡尔认证码的现有结构。在这里,我们证明了相当复杂的(二进制)算法可以在一个简单的CNN芯片上执行,通过提供一种算法来实现基于有限域上多项式表达式计算的特定笛卡尔认证码。计算的比特率在现有芯片的100 Mbit/sec范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信