{"title":"Cache restoration for highly partitioned virtualized systems","authors":"D. Daly, Harold W. Cain","doi":"10.1109/HPCA.2012.6169029","DOIUrl":null,"url":null,"abstract":"The economics of server consolidation have led to the support of virtualization features in almost all server-class systems, with the related feature set being a subject of significant competition. While most systems allow for partitioning at the relatively coarse grain of a single core, some systems also support multiprogrammed virtualization, whereby a system can be more finely partitioned through time-sharing, down to a percentage of a core being allotted to a virtual machine. When multiple virtual machines share a single core however, performance can suffer due to the displacement of microarchitectural state. We introduce cache restoration, a hardware-based prefetching mechanism initiated by the underlying virtualization software when a virtual machine is being scheduled on a core, prefetching its working set and warming its initial environment. Through cycle-accurate simulation of a POWER7 system, we show that when applied to its private per-core L3 last-level cache, the warm cache translates into 20% on average performance improvement for a mixture of workloads on a highly partitioned core, compared to a virtualized server without cache restoration.","PeriodicalId":380383,"journal":{"name":"IEEE International Symposium on High-Performance Comp Architecture","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on High-Performance Comp Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2012.6169029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
The economics of server consolidation have led to the support of virtualization features in almost all server-class systems, with the related feature set being a subject of significant competition. While most systems allow for partitioning at the relatively coarse grain of a single core, some systems also support multiprogrammed virtualization, whereby a system can be more finely partitioned through time-sharing, down to a percentage of a core being allotted to a virtual machine. When multiple virtual machines share a single core however, performance can suffer due to the displacement of microarchitectural state. We introduce cache restoration, a hardware-based prefetching mechanism initiated by the underlying virtualization software when a virtual machine is being scheduled on a core, prefetching its working set and warming its initial environment. Through cycle-accurate simulation of a POWER7 system, we show that when applied to its private per-core L3 last-level cache, the warm cache translates into 20% on average performance improvement for a mixture of workloads on a highly partitioned core, compared to a virtualized server without cache restoration.