Memory-Enhanced Evolutionary Strategy for QoS-Driven RIS Control

F. Zardi, G. Oliveri, M. Salucci, A. Massa
{"title":"Memory-Enhanced Evolutionary Strategy for QoS-Driven RIS Control","authors":"F. Zardi, G. Oliveri, M. Salucci, A. Massa","doi":"10.1109/USNC-URSI52151.2023.10238118","DOIUrl":null,"url":null,"abstract":"Operating Reconfigurable Intelligent Surfaces (RIS) requires a control strategy capable of coping with a constantly changing propagation environment. The use of a memory-enhanced evolutionary strategy is proposed here to exploit good solutions found at previous times and boost the exploration of the highly-dimensional solution space. The proposed approach does not require channel sensing at the RIS and its potentiality is demonstrated in a small-scale numerical analysis.","PeriodicalId":383636,"journal":{"name":"2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USNC-URSI52151.2023.10238118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Operating Reconfigurable Intelligent Surfaces (RIS) requires a control strategy capable of coping with a constantly changing propagation environment. The use of a memory-enhanced evolutionary strategy is proposed here to exploit good solutions found at previous times and boost the exploration of the highly-dimensional solution space. The proposed approach does not require channel sensing at the RIS and its potentiality is demonstrated in a small-scale numerical analysis.
qos驱动的RIS控制的内存增强进化策略
操作可重构智能表面(RIS)需要一种能够应对不断变化的传播环境的控制策略。本文提出了使用记忆增强进化策略来利用以前发现的好的解决方案,并促进对高维解决方案空间的探索。所提出的方法不需要在RIS上进行通道传感,其潜力在小规模数值分析中得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信