Cloud-Based NoSQL Data Migration

Aryan Bansel, H. González-Vélez, Adriana E. Chis
{"title":"Cloud-Based NoSQL Data Migration","authors":"Aryan Bansel, H. González-Vélez, Adriana E. Chis","doi":"10.1109/PDP.2016.111","DOIUrl":null,"url":null,"abstract":"Cloud computing has enabled the Database-as-a-Service (DBaaS) model to manage large volumes of user-generated data using NoSQL data repositories. There are several NoSQL implementations such as document, columnar, and key-value which ensure high availability, fault tolerance and scalability to serve distinct client requirements. Nonetheless, different NoSQL data models may also introduce unnecessary heterogeneity in DBaaS, which further restricts the user to migrate the application services according to business or technology changes. In this paper, we propose a NoSQL data migration framework to foster data portability across cloud-based heterogeneous NoSQL data repositories. The proposed approach involves data standardisation and classification stages to render an efficient mapping, and translation between cloud-based different NoSQL data stores. The current implementation of the framework supports three different data models: document, columnar and graph. Moreover, the framework is meta-model driven, and therefore allows developers to extend the support for new database models. Our approach includes an online compression algorithm for data migration (document to graph) whereby a graph database requires up to 46% less space. There is also a significant reduction (37% to 55%) in the number of nodes in the compressed graph database.","PeriodicalId":192273,"journal":{"name":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","volume":"261 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2016.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Cloud computing has enabled the Database-as-a-Service (DBaaS) model to manage large volumes of user-generated data using NoSQL data repositories. There are several NoSQL implementations such as document, columnar, and key-value which ensure high availability, fault tolerance and scalability to serve distinct client requirements. Nonetheless, different NoSQL data models may also introduce unnecessary heterogeneity in DBaaS, which further restricts the user to migrate the application services according to business or technology changes. In this paper, we propose a NoSQL data migration framework to foster data portability across cloud-based heterogeneous NoSQL data repositories. The proposed approach involves data standardisation and classification stages to render an efficient mapping, and translation between cloud-based different NoSQL data stores. The current implementation of the framework supports three different data models: document, columnar and graph. Moreover, the framework is meta-model driven, and therefore allows developers to extend the support for new database models. Our approach includes an online compression algorithm for data migration (document to graph) whereby a graph database requires up to 46% less space. There is also a significant reduction (37% to 55%) in the number of nodes in the compressed graph database.
基于云的NoSQL数据迁移
云计算使数据库即服务(DBaaS)模型能够使用NoSQL数据存储库管理大量用户生成的数据。有几种NoSQL实现,如文档、列和键值,它们确保了高可用性、容错性和可伸缩性,以满足不同的客户端需求。然而,不同的NoSQL数据模型也可能在DBaaS中引入不必要的异构性,这进一步限制了用户根据业务或技术变化迁移应用程序服务。在本文中,我们提出了一个NoSQL数据迁移框架,以促进基于云的异构NoSQL数据存储库之间的数据可移植性。提出的方法包括数据标准化和分类阶段,以呈现基于云的不同NoSQL数据存储之间的有效映射和转换。该框架的当前实现支持三种不同的数据模型:文档、柱状和图形。此外,该框架是元模型驱动的,因此允许开发人员扩展对新数据库模型的支持。我们的方法包括用于数据迁移(文档到图形)的在线压缩算法,其中图形数据库需要的空间最多减少46%。压缩图数据库中的节点数量也显著减少(37%到55%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信