Asymptotic properties of adaptive nonlinear stabilizers

M. Krstić
{"title":"Asymptotic properties of adaptive nonlinear stabilizers","authors":"M. Krstić","doi":"10.1109/ACC.1995.529314","DOIUrl":null,"url":null,"abstract":"A classical question in adaptive control is that of convergence of the parameter estimates to constant values in the absence of persistent excitation. We provide an affirmative answer for a class of adaptive stabilizers for nonlinear systems. Then we study their asymptotic behavior by considering the problem of whether the parameter estimates converge to values which would guarantee stabilization if used in a nonadaptive controller. We approach this problem by studying invariant manifolds and show that, except for a set of initial conditions of Lebesgue measure zero, the parameter estimates do converge to stabilizing values. Finally, we determine a (sufficiently large) time instant after which the adaptation can be disconnected at any time without destroying the closed-loop system stability.","PeriodicalId":317569,"journal":{"name":"Proceedings of 1995 American Control Conference - ACC'95","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 American Control Conference - ACC'95","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1995.529314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A classical question in adaptive control is that of convergence of the parameter estimates to constant values in the absence of persistent excitation. We provide an affirmative answer for a class of adaptive stabilizers for nonlinear systems. Then we study their asymptotic behavior by considering the problem of whether the parameter estimates converge to values which would guarantee stabilization if used in a nonadaptive controller. We approach this problem by studying invariant manifolds and show that, except for a set of initial conditions of Lebesgue measure zero, the parameter estimates do converge to stabilizing values. Finally, we determine a (sufficiently large) time instant after which the adaptation can be disconnected at any time without destroying the closed-loop system stability.
自适应非线性稳定器的渐近性质
自适应控制中的一个经典问题是在没有持续激励的情况下参数估计收敛到常数值的问题。对一类非线性系统的自适应稳定器给出了肯定的答案。然后,通过考虑参数估计是否收敛于非自适应控制器中保证镇定的值的问题,研究了它们的渐近行为。我们通过研究不变流形来解决这个问题,并证明了除了一组Lebesgue测度为零的初始条件外,参数估计都收敛于稳定值。最后,我们确定了一个(足够大的)时间瞬间,在这个时间瞬间之后,自适应可以在任何时候断开,而不会破坏闭环系统的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信