Identification of parameters of an AC machine from standstill time domain data

A. Keyhani, S. Moon, L. Xu
{"title":"Identification of parameters of an AC machine from standstill time domain data","authors":"A. Keyhani, S. Moon, L. Xu","doi":"10.1109/EAIT.1990.205484","DOIUrl":null,"url":null,"abstract":"The authors present an evaluation of the performance of the maximum likelihood (ML) method when used to estimate the linear parameters of a synchronous machine model from the standstill time-domain flux decay test data. It is shown that a unique set of parameters can be obtained and the noise effects can be dealt with effectively when the ML estimation technique is used. The results of study also show that accurate machine parameters can be identified even when signal-to-noise ratio is as low as 200:1.<<ETX>>","PeriodicalId":321250,"journal":{"name":"IEEE Workshop on Electronic Applications in Transportation","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Electronic Applications in Transportation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIT.1990.205484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The authors present an evaluation of the performance of the maximum likelihood (ML) method when used to estimate the linear parameters of a synchronous machine model from the standstill time-domain flux decay test data. It is shown that a unique set of parameters can be obtained and the noise effects can be dealt with effectively when the ML estimation technique is used. The results of study also show that accurate machine parameters can be identified even when signal-to-noise ratio is as low as 200:1.<>
从静止时域数据中识别交流电机的参数
给出了用最大似然(ML)方法从静止时域磁通衰减试验数据估计同步电机模型线性参数的性能评价。结果表明,采用机器学习估计技术可以获得一组唯一的参数,并且可以有效地处理噪声影响。研究结果还表明,即使在信噪比低至200:1的情况下,也能识别出准确的机器参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信