Development of Edge Camera System for Vehicle Detection System Using Local AI Optimizer Based on Minimum Network Resource

Y. Choi, J. Baek, Jin Hong Kim, Joon-Goo Lee
{"title":"Development of Edge Camera System for Vehicle Detection System Using Local AI Optimizer Based on Minimum Network Resource","authors":"Y. Choi, J. Baek, Jin Hong Kim, Joon-Goo Lee","doi":"10.1109/ICUFN57995.2023.10200213","DOIUrl":null,"url":null,"abstract":"This paper proposes an edge camera system for a vehicle detection system using AI local optimization method utilizing minimal network transmission data. Currently, various AI CCTVs are installed, but if they are installed in an area without data network support, updates are slow and optimization is difficult. We improve traffic object recognition by remotely optimizing the detector with minimal data in a 3G or so communication environment, and use it to estimate the speed and location of the vehicle. Local AI optimizer utilizes optimized weight data using DBs using environmental data-based background images, and vehicle speed estimation utilizes warping data-based tracking data. We confirmed the high sensing performance and speed recognition rate through certification exam of the proposed edge camera system.","PeriodicalId":341881,"journal":{"name":"2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN57995.2023.10200213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes an edge camera system for a vehicle detection system using AI local optimization method utilizing minimal network transmission data. Currently, various AI CCTVs are installed, but if they are installed in an area without data network support, updates are slow and optimization is difficult. We improve traffic object recognition by remotely optimizing the detector with minimal data in a 3G or so communication environment, and use it to estimate the speed and location of the vehicle. Local AI optimizer utilizes optimized weight data using DBs using environmental data-based background images, and vehicle speed estimation utilizes warping data-based tracking data. We confirmed the high sensing performance and speed recognition rate through certification exam of the proposed edge camera system.
基于最小网络资源的局部AI优化器车辆检测边缘摄像系统的开发
本文提出了一种基于AI局部优化方法的车辆检测边缘摄像系统,该系统利用最小的网络传输数据。目前,安装了各种AI cctv,但如果安装在没有数据网络支持的地区,则更新速度慢,难以优化。我们通过在3G左右的通信环境中使用最少的数据远程优化检测器来提高交通目标识别,并使用它来估计车辆的速度和位置。本地人工智能优化器利用基于环境数据的背景图像的db优化权重数据,车辆速度估计利用基于翘曲数据的跟踪数据。通过对所提出的边缘摄像头系统的认证考试,验证了该系统具有较高的传感性能和速度识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信