Digging for knowledge with information extraction: a case study on human gene-disease associations

Markus Bundschus, A. Bauer-Mehren, Volker Tresp, L. Furlong, H. Kriegel
{"title":"Digging for knowledge with information extraction: a case study on human gene-disease associations","authors":"Markus Bundschus, A. Bauer-Mehren, Volker Tresp, L. Furlong, H. Kriegel","doi":"10.1145/1871437.1871744","DOIUrl":null,"url":null,"abstract":"We present the information extraction system Text2SemRel. The system (semi-) automatically constructs knowledge bases from textual data consisting of facts about entities using semantic relations. An integral part of the system is a graph-based interactive visualization and search layer. The second contribution in this paper is the presentation of a case study on the (semi-) automatic construction of a knowledge base consisting of gene-disease associations. The resulting knowledge base, the Literature-derived Human Gene-Disease Network (LHGDN), is now an integral part of the Linked Life Data initiative and represents currently the largest publicly available gene-disease repository. The LHGDN is compared against several curated state of the art databases. A unique feature of the LHGDN is that the semantics of the associations constitute a wide variety of biomolecular conditions.","PeriodicalId":310611,"journal":{"name":"Proceedings of the 19th ACM international conference on Information and knowledge management","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1871437.1871744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We present the information extraction system Text2SemRel. The system (semi-) automatically constructs knowledge bases from textual data consisting of facts about entities using semantic relations. An integral part of the system is a graph-based interactive visualization and search layer. The second contribution in this paper is the presentation of a case study on the (semi-) automatic construction of a knowledge base consisting of gene-disease associations. The resulting knowledge base, the Literature-derived Human Gene-Disease Network (LHGDN), is now an integral part of the Linked Life Data initiative and represents currently the largest publicly available gene-disease repository. The LHGDN is compared against several curated state of the art databases. A unique feature of the LHGDN is that the semantics of the associations constitute a wide variety of biomolecular conditions.
用信息提取挖掘知识:人类基因与疾病关联的案例研究
提出了信息抽取系统Text2SemRel。该系统利用语义关系,从由实体事实组成的文本数据中(半)自动地构建知识库。该系统的一个重要组成部分是基于图形的交互式可视化和搜索层。本文的第二个贡献是介绍了一个由基因-疾病关联组成的知识库(半)自动化构建的案例研究。由此产生的知识库,即文献衍生的人类基因疾病网络(LHGDN),现在是关联生命数据计划的一个组成部分,代表了目前最大的公共基因疾病存储库。LHGDN与几个最先进的数据库进行了比较。LHGDN的一个独特特征是其关联的语义构成了各种各样的生物分子条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信