Sparse recovery using an iterative Variational Bayes algorithm and application to AoA estimation

Ahmad Bazzi, D. Slock, Lisa Meilhac
{"title":"Sparse recovery using an iterative Variational Bayes algorithm and application to AoA estimation","authors":"Ahmad Bazzi, D. Slock, Lisa Meilhac","doi":"10.1109/ISSPIT.2016.7886034","DOIUrl":null,"url":null,"abstract":"This paper presents an iterative Variational Bayes (VB) algorithm that allows sparse recovery of the desired transmitted vector. The VB algorithm is derived based on the latent variables introduced in the Bayesian model in hand. The proposed algorithm is applied to the Angle-of-Arrival (AoA) estimation problem and simulations demonstrate the potential of the proposed VB algorithm when compared to existing sparse recovery and compressed sensing algorithms, especially in the case of closely spaced sources. Furthermore, the proposed algorithm does not require prior knowledge of the number of sources and operates with only one snapshot.","PeriodicalId":371691,"journal":{"name":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2016.7886034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents an iterative Variational Bayes (VB) algorithm that allows sparse recovery of the desired transmitted vector. The VB algorithm is derived based on the latent variables introduced in the Bayesian model in hand. The proposed algorithm is applied to the Angle-of-Arrival (AoA) estimation problem and simulations demonstrate the potential of the proposed VB algorithm when compared to existing sparse recovery and compressed sensing algorithms, especially in the case of closely spaced sources. Furthermore, the proposed algorithm does not require prior knowledge of the number of sources and operates with only one snapshot.
稀疏恢复的迭代变分贝叶斯算法及其在AoA估计中的应用
本文提出了一种迭代变分贝叶斯(VB)算法,该算法允许对期望的传输向量进行稀疏恢复。VB算法是基于贝叶斯模型中引入的潜在变量推导出来的。将该算法应用于到达角(AoA)估计问题,仿真结果表明,与现有的稀疏恢复和压缩感知算法相比,所提出的VB算法具有很大的潜力,特别是在近距离源的情况下。此外,该算法不需要预先知道源的数量,并且仅使用一个快照进行操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信