Automatic Identification of Soil Layer from Borehole Digital Optical Image and GPR Based on Color Features

L. Li, C. Yu, T. Sun, Z. Han, X. Tang
{"title":"Automatic Identification of Soil Layer from Borehole Digital Optical Image and GPR Based on Color Features","authors":"L. Li, C. Yu, T. Sun, Z. Han, X. Tang","doi":"10.1109/PRRS.2018.8486325","DOIUrl":null,"url":null,"abstract":"For the high-resolution borehole image obtained by digital panoramic borehole camera system, a method for recognizing soil layer based on color features is proposed. Due to the obvious difference in color between soil layer and common rock layer, a soil layer detection model based on HSV color space is established. The binarized image of soil layer is obtained by using this model. Secondly, the binary image is filtered to depress the noise effects. Then, the binarized image of the soil layer is divided and the density of pixels in each segmentation is calculated to determine the depth, area and direction of the soil layer, so that the identification of soil layer in the digital borehole image can be achieved. Through verifying this method with many actual borehole images and comparing them with the corresponding borehole radar images, the result illustrate that this method can identify all of the soil layer throughout the whole borehole digital optical image automatically and quickly. It provides a new reliable method for the automatic identification of borehole structural planes in engineering application.","PeriodicalId":197319,"journal":{"name":"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRRS.2018.8486325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For the high-resolution borehole image obtained by digital panoramic borehole camera system, a method for recognizing soil layer based on color features is proposed. Due to the obvious difference in color between soil layer and common rock layer, a soil layer detection model based on HSV color space is established. The binarized image of soil layer is obtained by using this model. Secondly, the binary image is filtered to depress the noise effects. Then, the binarized image of the soil layer is divided and the density of pixels in each segmentation is calculated to determine the depth, area and direction of the soil layer, so that the identification of soil layer in the digital borehole image can be achieved. Through verifying this method with many actual borehole images and comparing them with the corresponding borehole radar images, the result illustrate that this method can identify all of the soil layer throughout the whole borehole digital optical image automatically and quickly. It provides a new reliable method for the automatic identification of borehole structural planes in engineering application.
基于颜色特征的钻孔数字光学图像与探地雷达的土层自动识别
针对数字全景钻孔相机系统获得的高分辨率钻孔图像,提出了一种基于颜色特征的土层识别方法。针对土层与普通岩层颜色存在明显差异的问题,建立了基于HSV颜色空间的土层检测模型。利用该模型得到了二值化后的土层图像。其次,对二值图像进行滤波,抑制噪声的影响。然后,对二值化后的土层图像进行分割,并计算每次分割像素的密度,确定土层的深度、面积和方向,从而实现数字钻孔图像中土层的识别。通过对大量实际钻孔图像进行验证,并与相应的钻孔雷达图像进行对比,结果表明,该方法能够自动、快速地识别整个钻孔数字光学图像中的所有土层。为工程应用中钻孔结构面自动识别提供了一种新的可靠方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信