An Approach for Information Discovery Using Ontology In Semantic Web Content

Ayhan Akgün, S. Ayvaz
{"title":"An Approach for Information Discovery Using Ontology In Semantic Web Content","authors":"Ayhan Akgün, S. Ayvaz","doi":"10.1145/3209914.3209940","DOIUrl":null,"url":null,"abstract":"Information searching techniques are rapidly developing as the World Wide Web (WWW) evolves. Along with the development of information technologies, the need for acquiring domain knowledge bases, accessing data sources and discovering insights increases. The advancements in knowledge discovery, information management and artificial intelligence require faster data processing, storing more data and developing more intelligent applications. This study provides an information discovery and data integration approach for linked open data in the semantic web. Using semantics embedded in ontologies, data available in knowledge bases can be enhanced to better serve the information needs of users. The entity relationships between resources and resource hierarchies represented as linked open data in semantic web provide semantically rich insights about the data and facilitates knowledge discovery. Graph theory methods can be utilized to enrich the features of data sets in semantic web. In this study, we propose an approach for integrating isolated data sources with semantic web by using ontologies to make them available for information discovery and enhancing the features of semantic data by using graph theory techniques.","PeriodicalId":174382,"journal":{"name":"Proceedings of the 1st International Conference on Information Science and Systems","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Conference on Information Science and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209914.3209940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Information searching techniques are rapidly developing as the World Wide Web (WWW) evolves. Along with the development of information technologies, the need for acquiring domain knowledge bases, accessing data sources and discovering insights increases. The advancements in knowledge discovery, information management and artificial intelligence require faster data processing, storing more data and developing more intelligent applications. This study provides an information discovery and data integration approach for linked open data in the semantic web. Using semantics embedded in ontologies, data available in knowledge bases can be enhanced to better serve the information needs of users. The entity relationships between resources and resource hierarchies represented as linked open data in semantic web provide semantically rich insights about the data and facilitates knowledge discovery. Graph theory methods can be utilized to enrich the features of data sets in semantic web. In this study, we propose an approach for integrating isolated data sources with semantic web by using ontologies to make them available for information discovery and enhancing the features of semantic data by using graph theory techniques.
基于本体的语义Web内容信息发现方法
随着万维网的发展,信息搜索技术得到了迅速发展。随着信息技术的发展,获取领域知识库、访问数据源和发现见解的需求也在增加。知识发现、信息管理和人工智能的进步要求更快的数据处理、存储更多的数据和开发更智能的应用程序。本研究为语义网中链接开放数据提供了一种信息发现和数据集成方法。使用嵌入在本体中的语义,可以增强知识库中可用的数据,以更好地满足用户的信息需求。在语义网络中,将资源之间的实体关系和资源层次表示为链接的开放数据,提供了丰富的数据语义洞察,促进了知识发现。利用图论方法可以丰富语义网中数据集的特征。在这项研究中,我们提出了一种方法,通过使用本体将孤立的数据源与语义网集成,使其可用于信息发现,并通过使用图论技术增强语义数据的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信