Formulating description logic learning as an Inductive Logic Programming task

S. Konstantopoulos, A. Charalambidis
{"title":"Formulating description logic learning as an Inductive Logic Programming task","authors":"S. Konstantopoulos, A. Charalambidis","doi":"10.1109/FUZZY.2010.5584417","DOIUrl":null,"url":null,"abstract":"We describe an Inductive Logic Programming (ILP) approach to learning descriptions in Description Logics (DL) under uncertainty. The approach is based on implementing many-valued DL proofs as propositionalizations of the elementary DL constructs and then providing this implementation as background predicates for ILP. The proposed methodology is tested on a many-valued variation of eastbound-trains and Iris, two well known and studied Machine Learning datasets.","PeriodicalId":377799,"journal":{"name":"International Conference on Fuzzy Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

We describe an Inductive Logic Programming (ILP) approach to learning descriptions in Description Logics (DL) under uncertainty. The approach is based on implementing many-valued DL proofs as propositionalizations of the elementary DL constructs and then providing this implementation as background predicates for ILP. The proposed methodology is tested on a many-valued variation of eastbound-trains and Iris, two well known and studied Machine Learning datasets.
将描述逻辑学习作为归纳逻辑编程任务
提出了一种用归纳逻辑规划(ILP)方法来学习描述逻辑(DL)中不确定条件下的描述。该方法基于将多值深度学习证明实现为基本深度学习构造的命题化,然后将该实现作为ILP的背景谓词提供。所提出的方法在东行列车和Iris的多值变化上进行了测试,这是两个众所周知的和研究过的机器学习数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信