{"title":"Formulating description logic learning as an Inductive Logic Programming task","authors":"S. Konstantopoulos, A. Charalambidis","doi":"10.1109/FUZZY.2010.5584417","DOIUrl":null,"url":null,"abstract":"We describe an Inductive Logic Programming (ILP) approach to learning descriptions in Description Logics (DL) under uncertainty. The approach is based on implementing many-valued DL proofs as propositionalizations of the elementary DL constructs and then providing this implementation as background predicates for ILP. The proposed methodology is tested on a many-valued variation of eastbound-trains and Iris, two well known and studied Machine Learning datasets.","PeriodicalId":377799,"journal":{"name":"International Conference on Fuzzy Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
We describe an Inductive Logic Programming (ILP) approach to learning descriptions in Description Logics (DL) under uncertainty. The approach is based on implementing many-valued DL proofs as propositionalizations of the elementary DL constructs and then providing this implementation as background predicates for ILP. The proposed methodology is tested on a many-valued variation of eastbound-trains and Iris, two well known and studied Machine Learning datasets.