Range Utility Theory for Uncertain Cash-flows

Manel Baucells, Michał Lewandowski, K. Kontek
{"title":"Range Utility Theory for Uncertain Cash-flows","authors":"Manel Baucells, Michał Lewandowski, K. Kontek","doi":"10.2139/ssrn.3466617","DOIUrl":null,"url":null,"abstract":"We introduce range utility theory, an integrative behavioral model for uncertain cash flows. The model modifies rank dependent utility, by replacing rank principles with range principles, and extends the domain to time. For gambles played in the future, the model generalizes the probability and time trade-off model. The model comes with three functions: a value function, a subjective survival function for time and an s-shaped range distortion function, and. Range Utility Theory jointly explains the Samuelson paradox for risk and time, the preference reversal phenomenon, and hyperbolic discounting; and produces many novel testable predictions.","PeriodicalId":176300,"journal":{"name":"Microeconomics: Intertemporal Consumer Choice & Savings eJournal","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microeconomics: Intertemporal Consumer Choice & Savings eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3466617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce range utility theory, an integrative behavioral model for uncertain cash flows. The model modifies rank dependent utility, by replacing rank principles with range principles, and extends the domain to time. For gambles played in the future, the model generalizes the probability and time trade-off model. The model comes with three functions: a value function, a subjective survival function for time and an s-shaped range distortion function, and. Range Utility Theory jointly explains the Samuelson paradox for risk and time, the preference reversal phenomenon, and hyperbolic discounting; and produces many novel testable predictions.
不确定现金流的极差效用理论
本文介绍了一种不确定现金流的综合行为模型——范围效用理论。该模型通过将秩原则替换为范围原则来修改秩相关效用,并将域扩展到时间。对于未来的赌博,该模型推广了概率和时间权衡模型。该模型包含三个函数:价值函数、时间主观生存函数和s形范围失真函数。范围效用理论共同解释了萨缪尔森风险与时间悖论、偏好反转现象和双曲折现;并产生了许多新颖的可测试的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信