On Fusion of Partial Estimates Under Implicit Partial Knowledge of Correlation

Jiří Ajgl, O. Straka
{"title":"On Fusion of Partial Estimates Under Implicit Partial Knowledge of Correlation","authors":"Jiří Ajgl, O. Straka","doi":"10.23919/fusion43075.2019.9011251","DOIUrl":null,"url":null,"abstract":"Covariance Intersection fusion is bound-optimal under unknown correlations. Partial knowledge can improve the fusion. An implicit constraint on correlation has been introduced in the literature for full-vector estimates. This paper considers fusion of partial estimates. Weak and strong counterparts of the full-vector assumption are proposed. An analysis of admissible ideal fusions reveals that the considered implicit partial knowledge cannot improve the Covariance Intersection fusion of partial estimates. An exception is found for the strong assumption and fusion of one partial and one full-vector estimate. For this case, an improved fusion rule is presented.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Covariance Intersection fusion is bound-optimal under unknown correlations. Partial knowledge can improve the fusion. An implicit constraint on correlation has been introduced in the literature for full-vector estimates. This paper considers fusion of partial estimates. Weak and strong counterparts of the full-vector assumption are proposed. An analysis of admissible ideal fusions reveals that the considered implicit partial knowledge cannot improve the Covariance Intersection fusion of partial estimates. An exception is found for the strong assumption and fusion of one partial and one full-vector estimate. For this case, an improved fusion rule is presented.
隐式偏相关知识下的部分估计融合
协方差交叉融合是未知关联下的界最优融合。局部知识可以改善融合。在全向量估计的文献中引入了一个隐式的相关约束。本文考虑了部分估计的融合问题。给出了全矢量假设的弱对应和强对应。对可容许理想融合的分析表明,所考虑的隐式部分知识不能改善部分估计的协方差相交融合。对于一个部分矢量估计和一个全矢量估计的强假设和融合发现了一个例外。针对这种情况,提出了一种改进的融合规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信