Data-Driven Immunization

Yao Zhang, A. Ramanathan, A. Vullikanti, L. Pullum, B. Prakash
{"title":"Data-Driven Immunization","authors":"Yao Zhang, A. Ramanathan, A. Vullikanti, L. Pullum, B. Prakash","doi":"10.1109/ICDM.2017.71","DOIUrl":null,"url":null,"abstract":"Given a contact network and coarse-grained diagnostic information like electronic Healthcare Reimbursement Claims (eHRC) data, can we develop efficient intervention policies to control an epidemic? Immunization is an important problem in multiple areas especially epidemiology and public health. However, most existing studies focus on developing pre-emptive strategies assuming prior epidemiological models. In practice, disease spread is usually complicated, hence assuming an underlying model may deviate from true spreading patterns, leading to possibly inaccurate interventions. Additionally, the abundance of health care surveillance data (like eHRC) makes it possible to study data-driven strategies without too many restrictive assumptions. Hence, such an approach can help public-health experts take more practical decisions. In this paper, we take into account propagation log and contact networks for controlling propagation. We formulate the novel and challenging Data-Driven Immunization problem without assuming classical epidemiological models. To solve it, we first propose an efficient sampling approach to align surveillance data with contact networks, then develop an efficient algorithm with the provably approximate guarantee for immunization. Finally, we show the effectiveness and scalability of our methods via extensive experiments on multiple datasets, and conduct case studies on nation-wide real medical surveillance data.","PeriodicalId":254086,"journal":{"name":"2017 IEEE International Conference on Data Mining (ICDM)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2017.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Given a contact network and coarse-grained diagnostic information like electronic Healthcare Reimbursement Claims (eHRC) data, can we develop efficient intervention policies to control an epidemic? Immunization is an important problem in multiple areas especially epidemiology and public health. However, most existing studies focus on developing pre-emptive strategies assuming prior epidemiological models. In practice, disease spread is usually complicated, hence assuming an underlying model may deviate from true spreading patterns, leading to possibly inaccurate interventions. Additionally, the abundance of health care surveillance data (like eHRC) makes it possible to study data-driven strategies without too many restrictive assumptions. Hence, such an approach can help public-health experts take more practical decisions. In this paper, we take into account propagation log and contact networks for controlling propagation. We formulate the novel and challenging Data-Driven Immunization problem without assuming classical epidemiological models. To solve it, we first propose an efficient sampling approach to align surveillance data with contact networks, then develop an efficient algorithm with the provably approximate guarantee for immunization. Finally, we show the effectiveness and scalability of our methods via extensive experiments on multiple datasets, and conduct case studies on nation-wide real medical surveillance data.
数据驱动的免疫
给定联系网络和粗粒度诊断信息(如电子医疗报销报销(eHRC)数据),我们能否制定有效的干预政策来控制流行病?免疫是流行病学和公共卫生等多个领域的重要问题。然而,大多数现有的研究都集中在假设先前的流行病学模型的前提下制定先发制人的策略。在实践中,疾病传播通常是复杂的,因此假设一个潜在的模型可能偏离真实的传播模式,导致可能不准确的干预措施。此外,丰富的医疗保健监测数据(如eHRC)使研究数据驱动的策略成为可能,而无需太多限制性假设。因此,这种方法可以帮助公共卫生专家做出更实际的决定。在本文中,我们考虑了传播日志和接触网络来控制传播。我们在没有假设经典流行病学模型的情况下制定了新颖且具有挑战性的数据驱动免疫问题。为了解决这个问题,我们首先提出了一种有效的采样方法来将监测数据与接触网络对齐,然后开发了一种有效的算法,该算法具有可证明的近似免疫保证。最后,我们通过在多个数据集上进行大量实验,并对全国范围内的真实医疗监测数据进行了案例研究,展示了我们方法的有效性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信