{"title":"High-Repetition-Rate Pulsed Yb-Doped Fiber Laser Based on Hybrid Plasmonic Microfiber Resonator","authors":"Zi-xuan Ding, Yingzhong Ma, Kang Zhou, Fei Xu","doi":"10.1109/icicn52636.2021.9673982","DOIUrl":null,"url":null,"abstract":"Mode-locking based on dissipative four-wave-mixing (DFWM) has been fundamental in producing pulses with repetition rates on the order of gigahertz, where comb filters and long nonlinear components are elemental. Here we demonstrate a gigahertz stable pulsed Yb-doped fiber laser based on the hybrid plasmonic microfiber knot resonator device. Output with repetition rate of 54.8 GHz at 1 μm waveband and 2.27 ps pulse-width is achieved. Unlike previous pulse generation mechanisms, the operation utilizes the nonlinear-polarization-rotation (NPR) effect introduced by the polarization-dependent feature of the device to increase intracavity power for boosting DFWM mode-locking. The easily fabricated versatile device acts as a polarizer, comb filter, and nonlinear component simultaneously, thereby introducing a novel application of microfiber resonator devices in ultrafast and nonlinear photonics.","PeriodicalId":231379,"journal":{"name":"2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icicn52636.2021.9673982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Mode-locking based on dissipative four-wave-mixing (DFWM) has been fundamental in producing pulses with repetition rates on the order of gigahertz, where comb filters and long nonlinear components are elemental. Here we demonstrate a gigahertz stable pulsed Yb-doped fiber laser based on the hybrid plasmonic microfiber knot resonator device. Output with repetition rate of 54.8 GHz at 1 μm waveband and 2.27 ps pulse-width is achieved. Unlike previous pulse generation mechanisms, the operation utilizes the nonlinear-polarization-rotation (NPR) effect introduced by the polarization-dependent feature of the device to increase intracavity power for boosting DFWM mode-locking. The easily fabricated versatile device acts as a polarizer, comb filter, and nonlinear component simultaneously, thereby introducing a novel application of microfiber resonator devices in ultrafast and nonlinear photonics.