{"title":"Vehicle-to-Grid Management Strategy for Smart Grid Power Regulation","authors":"Hassen Chtioui, G. Boukettaya","doi":"10.1109/ENERGYCon48941.2020.9236530","DOIUrl":null,"url":null,"abstract":"Growing environmental threats have brought to the fore the need to transition into clean and sustainable economies. Countless ground-breaking technological developments have been made in pursuit of discovering and integrating better energy sources such as electric vehicles for smart grids. This paper aims to study a proposed simulation environment representing a micro-grid containing a fleet of electric vehicles with a limited vehicle-to-grid application. In fact, the discharging mode is only applied in the case of peak demand with a very high response time. The building blocks of this micro-grid are outlined and modeled and a simulation of their operations is presented. The paper delves into the management strategies used to regulate the power in this simulation and investigates further the charging and discharging scenarios.","PeriodicalId":156687,"journal":{"name":"2020 6th IEEE International Energy Conference (ENERGYCon)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th IEEE International Energy Conference (ENERGYCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENERGYCon48941.2020.9236530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Growing environmental threats have brought to the fore the need to transition into clean and sustainable economies. Countless ground-breaking technological developments have been made in pursuit of discovering and integrating better energy sources such as electric vehicles for smart grids. This paper aims to study a proposed simulation environment representing a micro-grid containing a fleet of electric vehicles with a limited vehicle-to-grid application. In fact, the discharging mode is only applied in the case of peak demand with a very high response time. The building blocks of this micro-grid are outlined and modeled and a simulation of their operations is presented. The paper delves into the management strategies used to regulate the power in this simulation and investigates further the charging and discharging scenarios.