Luca Rossetto, Ivan Giangreco, Claudiu Tanase, H. Schuldt
{"title":"vitrivr: A Flexible Retrieval Stack Supporting Multiple Query Modes for Searching in Multimedia Collections","authors":"Luca Rossetto, Ivan Giangreco, Claudiu Tanase, H. Schuldt","doi":"10.1145/2964284.2973797","DOIUrl":null,"url":null,"abstract":"vitrivr is an open source full-stack content-based multimedia retrieval system with focus on video. Unlike the majority of the existing multimedia search solutions, vitrivr is not limited to searching in metadata, but also provides content-based search and thus offers a large variety of different query modes which can be seamlessly combined: Query by sketch, which allows the user to draw a sketch of a query image and/or sketch motion paths, Query by example, keyword search, and relevance feedback. The vitrivr architecture is self-contained and addresses all aspects of multimedia search, from offline feature extraction, database management to frontend user interaction. The system is composed of three modules: a web-based frontend which allows the user to input the query (e.g., add a sketch) and browse the retrieved results (vitrivr-ui), a database system designed for interactive search in large-scale multimedia collections (ADAM), and a retrieval engine that handles feature extraction and feature-based retrieval (Cineast). The vitrivr source is available on GitHub under the MIT open source (and similar) licenses and is currently undergoing several upgrades as part of the Google Summer of Code 2016.","PeriodicalId":140670,"journal":{"name":"Proceedings of the 24th ACM international conference on Multimedia","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2964284.2973797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51
Abstract
vitrivr is an open source full-stack content-based multimedia retrieval system with focus on video. Unlike the majority of the existing multimedia search solutions, vitrivr is not limited to searching in metadata, but also provides content-based search and thus offers a large variety of different query modes which can be seamlessly combined: Query by sketch, which allows the user to draw a sketch of a query image and/or sketch motion paths, Query by example, keyword search, and relevance feedback. The vitrivr architecture is self-contained and addresses all aspects of multimedia search, from offline feature extraction, database management to frontend user interaction. The system is composed of three modules: a web-based frontend which allows the user to input the query (e.g., add a sketch) and browse the retrieved results (vitrivr-ui), a database system designed for interactive search in large-scale multimedia collections (ADAM), and a retrieval engine that handles feature extraction and feature-based retrieval (Cineast). The vitrivr source is available on GitHub under the MIT open source (and similar) licenses and is currently undergoing several upgrades as part of the Google Summer of Code 2016.