Feature Selection: Multi-source and Multi-view Data Limitations, Capabilities and Potentials

M. Cherrington, Joan Lu, David Airehrour, F. Thabtah, Qiang Xu, Samaneh Madanian
{"title":"Feature Selection: Multi-source and Multi-view Data Limitations, Capabilities and Potentials","authors":"M. Cherrington, Joan Lu, David Airehrour, F. Thabtah, Qiang Xu, Samaneh Madanian","doi":"10.1109/ITNAC46935.2019.9077992","DOIUrl":null,"url":null,"abstract":"Feature Selection (FS) is a crucial step in high-dimensional and big data analytics. It mitigates the ‘curse of dimensionality’ by removing redundant and irrelevant features. Most FS algorithms use a single source of data and struggle with heterogeneous data, yet multi-source (MS) and multi-view (MV) data are rich and valuable knowledge sources. This paper reviews numerous, emerging FS techniques for both these data types. The major contribution of this paper is to underscore uses and limitations of these heterogeneous methods concurrently, by summarising their capabilities and potentials to inform key areas of future research, especially in numerous applications.","PeriodicalId":407514,"journal":{"name":"2019 29th International Telecommunication Networks and Applications Conference (ITNAC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 29th International Telecommunication Networks and Applications Conference (ITNAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNAC46935.2019.9077992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Feature Selection (FS) is a crucial step in high-dimensional and big data analytics. It mitigates the ‘curse of dimensionality’ by removing redundant and irrelevant features. Most FS algorithms use a single source of data and struggle with heterogeneous data, yet multi-source (MS) and multi-view (MV) data are rich and valuable knowledge sources. This paper reviews numerous, emerging FS techniques for both these data types. The major contribution of this paper is to underscore uses and limitations of these heterogeneous methods concurrently, by summarising their capabilities and potentials to inform key areas of future research, especially in numerous applications.
特征选择:多源和多视图数据的限制、能力和潜力
特征选择(FS)是高维和大数据分析的关键步骤。它通过去除冗余和不相关的特征来减轻“维度的诅咒”。大多数FS算法使用单一数据源,难以处理异构数据,而多源(MS)和多视图(MV)数据是丰富而有价值的知识来源。本文回顾了许多针对这两种数据类型的新兴FS技术。本文的主要贡献是通过总结它们的能力和潜力来强调这些异构方法的使用和局限性,从而为未来研究的关键领域提供信息,特别是在众多应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信