Grey wolf optimizer-based back-propagation neural network algorithm

M. F. Hassanin, Abdullah M. Shoeb, A. Hassanien
{"title":"Grey wolf optimizer-based back-propagation neural network algorithm","authors":"M. F. Hassanin, Abdullah M. Shoeb, A. Hassanien","doi":"10.1109/ICENCO.2016.7856471","DOIUrl":null,"url":null,"abstract":"For many decades, artificial neural network (ANN) proves successful results in thousands of problems in many disciplines. Back-propagation (BP) is one of the candidate algorithms to train ANN. Due to the way of BP to find the solution for the underlying problem, there is an important drawback of it, namely the stuck in local minima rather than the global one. Recent studies introduce meta-heuristic techniques to train ANN. The current work proposes a framework in which grey wolf optimizer (GWO) provides the initial solution to a BP ANN. Five datasets are used to benchmark GWO BP performance with other competitors. The first competitor is an optimized BP ANN based on genetic algorithm. The second is a BP ANN powered by particle swarm optimizer. The third is the BP algorithm itself and lastly a feedforward ANN enhanced by GWO. The carried experiments show that GWOBP outperforms the compared algorithms.","PeriodicalId":332360,"journal":{"name":"2016 12th International Computer Engineering Conference (ICENCO)","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Computer Engineering Conference (ICENCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICENCO.2016.7856471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

For many decades, artificial neural network (ANN) proves successful results in thousands of problems in many disciplines. Back-propagation (BP) is one of the candidate algorithms to train ANN. Due to the way of BP to find the solution for the underlying problem, there is an important drawback of it, namely the stuck in local minima rather than the global one. Recent studies introduce meta-heuristic techniques to train ANN. The current work proposes a framework in which grey wolf optimizer (GWO) provides the initial solution to a BP ANN. Five datasets are used to benchmark GWO BP performance with other competitors. The first competitor is an optimized BP ANN based on genetic algorithm. The second is a BP ANN powered by particle swarm optimizer. The third is the BP algorithm itself and lastly a feedforward ANN enhanced by GWO. The carried experiments show that GWOBP outperforms the compared algorithms.
基于灰狼优化器的反向传播神经网络算法
几十年来,人工神经网络(ANN)在许多学科的数千个问题上证明了成功的结果。反向传播(BP)算法是训练人工神经网络的候选算法之一。由于BP寻找潜在问题的解决方案的方式,它有一个重要的缺点,即停留在局部极小值而不是全局极小值。最近的研究引入了元启发式技术来训练人工神经网络。目前的工作提出了一个框架,其中灰狼优化器(GWO)为BP神经网络提供初始解。五个数据集用于基准GWO BP性能与其他竞争对手。第一个竞争者是基于遗传算法的优化BP神经网络。二是基于粒子群优化器的BP神经网络。第三是BP算法本身,最后是由GWO增强的前馈神经网络。进行的实验表明,GWOBP算法优于比较算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信